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ABSTRACT

An analytic model for a stellar-occultation light curve has been developed for a small, spherically
symmetric planetary atmosphere that includes thermal and molecular weight gradients in a region that
overlies an extinction layer. This work applies to the thermal structure of the upper part of Pluto’s
atmosphere probed by current stellar occultation data, so the issue of whether the lower part should be
modeled as an extinction layer or sharp thermal gradient is not addressed. The model can be described
by two equivalent sets of parameters. One set specifies the occultation light curve in terms of signal
levels, times, and time intervals. Consequently, it is the more suitable set to use for fitting the light
curve. The other set specifies physical parameters of the planetary atmosphere. Equations are given for
the transforming between the sets of parameters, including their errors and correlation coefficients.
Detailed numerical calculations are presented for a benchmark case. In order to establish the formal
errors in the model parameters expected for datasets of different quality, least-squares fitting tests are
carried out on synthetic datasets with different noise levels. This model has also been fit to the KAO
data from the 1988 June 9 stellar occultation by Pluto. For the case with an isothermal constraint, the
fitted parameters agree with our previous isothermal analysis [Elliot et al., Icarus 77, 148 (1989)]. Fits
of these data that include a temperature gradient as a free parameter yield a temperature to molecular
weight ratio 7T/u=(3.724075) Kamu ' and normalized gradient (dT/dr)/T
=(—49+70)x10"*km~" at r = 1250 km. Interpretation of these results depends on the mean
molecular weight of the atmosphere. The values are 60 + 12 K and — 0.029 + 0.040 K km ~!' for the
limiting case of pure CH, (u = 16.04) and 104 4+ 21 K and — 0.051 + 0.070 K km ~ ! for the limiting
case of pure N, (u = 28.01). Our result is consistent with the isothermal prediction of the “methane-
thermostat” model of Pluto’s atmosphere [Yelle & Lunine, Nature, 339, 288 (1989)]. However, Plu-
to’s atmosphere could be isothermal in this region at a lower temperature than the 106 K predicted by
the model, if the radiative cooling occurs at a wavelength longer than the 7.8 ym band of CH,. A
summary of our current knowledge of Pluto’s atmosphere and related parameters is tabulated. The
ambiguity between the haze and thermal-gradient possibilities for Pluto’s lower atmosphere limits the
accuracy with which we now know Pluto’s surface radius and bulk density. If the “haze model” is
correct, then Pluto’s surface radius is less than 1181 km and its bulk density is greater than 1.88
gcm > On the other hand, if the “thermal-gradient model” is correct, then Pluto’s surface radius
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would be 1206 + 11 km and its density would be 1.77 +0.33 g cm .

1. INTRODUCTION

With the technique of stellar occultations we can probe
the atmospheres of distant bodies with remarkable spatial
resolution—just a few kilometers for a body at the distance
of Pluto, for example. Analysis of stellar occultation light
curves for atmospheric occultations has been accomplished
with two approaches: (i) fitting a model to the light curve
and (ii) numerical inversion. For each we assume that the
atmosphere is in hydrostatic equilibrinm. As previously
used, model fitting yields a mean atmospheric scale height,
and inversion yields scale height as a function of altitude.
Neither approach requires knowledge of the refractivity or
mean molecular weight of the gases comprising the atmo-
sphere, although these are assumed not to vary over the alti-
tude range of interest.

Following Baum & Code’s (1953) development of a mod-
el for fitting the occultation light curve of a large planet with
an isothermal atmosphere, Goldsmith (1963) compared
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such an isothermal model to a light curve produced by a
large planet that had a thermal gradient. He concluded that
a thermal gradient in the atmosphere could not be deter-
mined from the shape of the occultation light curve. This
result was discussed by Wasserman & Veverka (1973).
French et al. (1978) determined errors for the occultation
light curve for a large planet with an isothermal atmosphere
that contains photon noise. This model has been used to fit
occultation curves that contain “spikes” (Elliot & Veverka
1976), with the caveat that errors in the fitted parameters
are really unknown, since the spikes do not have the same
statistical properties as photon noise.

In contrast to the occultation light curves of the Jovian
planets and Mars, Pluto’s stellar occultation curve is almost
entirely devoid of spikes (Elliot et al. 1989), so that the mod-
eling approach is likely to yield meaningful results, provided
that one can establish the correct model atmosphere. Model-
ing techniques had to be extended beyond the large-planet
case for analysis of the Pluto data because Pluto’s scale
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height at the occultation level is nearly 5% of its radius. In
the context of analyzing the Pluto occultation data, correc-
tions for the small planet case have been developed in two
ways: by numerical integration to find the refraction angle
(Hubbard et al. 1988), and by applying a correction to the
results of a large-planet, isothermal model (Elliot et al.
1989).

Modeling of Pluto’s stellar occultation data is not without
its complications, however. As can be seen from its stellar
occultation light curve (see Fig. 6), Pluto’s atmosphere is
divided into two zones: an upper zone that is clear and a
lower zone that is characterized by either (i) an extinction
layer (Elliot et al. 1989), or (ii) a sharp thermal gradient
(Eshleman 1989; Hubbard et al. 1990). For the upper
zone—under the assumption that the dominant heating
mechanism is solar absorption in the 3.3 um CH, band and
the dominant cooling mechanism is radiation in the 7.8 um
CH, band—Yelle & Lunine (1989) have established that
the presence of even a small amount of CH, would cause the
atmosphere to be isothermal in this region, with a tempera-
ture of about 106 K. Although Yelle & Lunine’s model re-
quires a thermal gradient in the lower atmosphere in order to
reach the surface temperature of Pluto (Hubbard et al.
1990), we shall refer to it as the “methane-thermostat” mod-
el (rather than the “thermal-gradient” model), in order to
avoid confusion with the discussion of thermal gradients in
the other parts of the atmosphere and to distinguish it from
potential models in which emission by molecular species
other than CH, might dominate the atmospheric cooling.
The choice between the extinction and thermal-gradient in-
terpretations of the lower part of Pluto’s occultation light
curve remains unresolved, since it has not been established
that the thermal gradient required by the methane-thermo-
stat model would necessarily be great enough to explain the
structure of the light curve.

So far, modeling of Pluto’s occultation light curve has
been done under the assumption that the upper part of its
atmosphere is isothermal, and this analysis yields a tempera-
ture to molecular weight ratio of 4.2 4+ 0.4 K/amu; from this
ratio, the temperature of a pure CH, atmosphere would be
67 + 6 K, and that of a pure N, atmosphere would be
117 + 11 K (Elliot ef al. 1989). Combining the tempera-
ture-to-molecular-weight ratio from the occultation analysis
with the temperature of 106 K from the methane-thermostat
model, Yelle & Lunine (1989) find a mean molecular weight
of 25 + 3. This would imply an atmosphere dominated by a
heavier gas, such as N,, CO, or Ar (Hubbard et al. 1990).

Our ignorance of fundamental properties of Pluto’s atmo-
sphere—such as the identity of its major constituent and
whether an extinction layer, a sharp thermal gradient, or
both exist in its lower atmosphere—prompted us to extend
our analytical techniques to learn more about Pluto’s atmo-
sphere from occultation data. For example, one might be
able to test the methane-thermostat model by learning
whether the atmosphere corresponding to the upper part of
the occultation curve is indeed isothermal, as required by the
model.

In this paper we examine the fundamentals of modeling
stellar-occultation data for a planetary atmosphere, with the
goal of establishing whether thermal and compositional gra-
dients can be determined for Pluto’s atmosphere. As dis-
cussed above, whether the break in the KAO light curve
(Elliot et al. 1989) corresponds to a sharp thermal gradient
or extinction layer remains an open question. Hence we shall

be focusing our attention on the upper part of the light curve,
where the methane-thermostat model predicts that the at-
mosphere should be isothermal. For convenience, we model
the lower part of the curve as an extinction layer, since this
model fits the data well.

We assume that the atmosphere is in hydrostatic equilibri-
um. Our analytical procedure includes all small-planet ef-
fects that have been used previously for Pluto by Hubbard et
al. (1988) and Elliot ez al. (1989): (i) the variation of gravi-
tational acceleration with radius, (ii) the concentration of
stellar flux due to the “refraction shrinkage” of the planet’s
shadow, (iii) geometrical terms that arise when the local
scale height is a significant fraction of the planet’s radius,
and (iv) the variation in the apparent stellar velocity perpen-
dicular to the planetary limb. Our model also includes possi-
ble thermal and compositional gradients in the planetary
atmosphere.

In order to limit the scope of this work, we have made
several approximations suitable for Pluto: (i) the light re-
ceived at any time comes from only one point on the plan-
etary limb, (ii) the rotational acceleration in the atmosphere
is small compared with gravity, (iii) the velocity of the plan-
et’s shadow relative to the observer is constant throughout
the occultation, and (iv) the atmospheric structure is spheri-
cally symmetric. To facilitate the application of our work to
other planets, however, we develop a framework that can be
extended to cases for which these approximations do not
apply.

Our method provides a prescription for calculating a
model occultation light curve that uses power series rather
than numerical integrations. The resulting expressions are
more transparent to how model parameters affect the light
curve and require less computing time than numerical inte-
grations.

Following the formulation of our model and tests of its
performance by fitting synthetic data, we fit it to the KAO
Pluto light curve for the 1988 June 9 stellar occultation, in-
cluding an upper-atmosphere thermal gradient as a free pa-
rameter. We then use these results to summarize our current
understanding of Pluto’s atmospheric structure and to estab-
lish constraints on Pluto’s surface radius and bulk density.

2. OCCULTATION LIGHT CURVE FOR A SPHERICALLY
SYMMETRIC PLANET

Since a principal goal of our work is to ascertain the effect
of a thermal gradient on a stellar occultation light curve, we
calculate the model light curve from first principles in order
to avoid overlooking any effect of the same order as a tem-
perature gradient. We shall restrict our derivation to those
steps appropriate for the Pluto occultation of 1988 June, but
we set up a framework that can be extended to more general
cases in the future.

Using the geometric optics approximation, we refer to the
diagram of Fig. 1, where monochromatic, parallel light rays
are incident on a planetary atmosphere from the left and
then encounter a spherically symmetric planet. In the ob-
server’s plane (perpendicular to the incident light rays), a
radial coordinate p has its origin at the point of intersection
of this plane and the path of the light ray that would have
passed through the center of the planet. The coordinate p is
used in two ways. We write the observer’s position in the
plane as a function of time, p = p(#), which is determined
from the geocentric planetary ephemeris and the motion of
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F1G. 1. Stellar occultation by a planetary atmosphere. Starlight en-
counters a planetary atmosphere and is bent by the gradient of refracti-
vity in the atmosphere. Since the refraction increases exponentially with
depth in the atmosphere, two neighboring rays separate by an amount
proportional to distance from the planet, which causes the star to dim as
seen by a distant observer. Another dimming effect is atmospheric ex-
tinction, which exists in our model only for radii less than r,.

the observer relative to the center of the Earth. We also refer
to the position in the observer’s plane, p = p(r), as the point
of arrival for a light ray with an original path that made a
closest approach  to the center of the planet.

We calculate the stellar flux in the plane of the observer by
considering what happens to a bundle of light rays through
their planetary encounter. The stellar flux, upon passing
through the planetary atmosphere, will be changed by three
effects: (i) differential bending of the light rays, (ii) absorp-
tion by the atmosphere, and (iii) partial focusing of the light
by the curvature of the planetary limb in the plane perpen-
dicular to the path of the ray. An initial bundle of light rays
that has a width dr before interaction with the planet will be
expanded or concentrated into a width dp in the observer’s
plane, due to differential bending. The stellar flux will
change by the factor |dr/dp|, where we use the absolute val-
ue so that our expression will be valid for cases when the
bending of the light rays is not a monotonic function of r.
Atmospheric absorption will diminish the flux by a factor
€xp[ — Tops () ], where 7, (7) is the optical depth along
the path of the ray. Finally, the focusing by the planetary
limb changes the flux by the ratio of the circumferences of
the “circles of light” of radius 7 and p. Hence, the flux in the
observer’s plane, §(7), is simply written as a product of three
factors:

dr
dp(r)

Thessingularity in £ (r) for p(r) = 0does not cause a prob-
lem for the analysis of the 1988 Pluto data, since none of the
observations were made near the center of the shadow. For
observations made near the shadow center, one can remove
the singularity from the model by including effects of diffrac-
tion, the angular extent of the occulted source, and the obla-
teness of the planet (Elliot ef al. 1976; 1977; 1984).

In order to evaluate the factors that appear in Eq. (2.1),
we make some further assumptions. A light ray with closest
approach distance r to the center of the planet is bent by the
planet and then deviates from its original path by an angle
6(r). This angle lies in the plane containing the center of the

(r)=——r
¢ p(r)

exp[ — Tons (M) ]. (2.1)

planet and the original path of the ray. It is negative for rays
bent toward the center of the planet, and we assume it is a
small angle for the purpose of trigonometric approxima-
tions. The ray then travels to the observer’s plane, lying at a
distance D from the center of the planet. Since the radial
coordinate p would never be negative, we have the following
relation between the intersection points of a light ray in the
two planes of interest:

p(r) = |r+ DO(r)|. (2.2)
We now can take the derivative needed in Eq. (2.1)
ar | _ 1 . 2.3)
dp(r)| |1+ D[d6(r)/dr]|

To proceed further, we must obtain expressions for 8(r)
and 7, () in terms of the properties of the planetary atmo-
sphere. Since our planet is spherically symmetric, its refrac-
tivity, v(7'), and linear absorption coefficient, «(#'), are
functions only of the distance from the center of the planet,
(see Fig. 1). Since we shall need to integrate refraction and
absorption along the path of the ray, we define an x coordi-
nate that lies along the path of the ray and has its origin at the
closest approach of the ray to the center of the planet. We
assume that the deviation of the ray from its original path
within the atmosphere is small enough to be neglected, so
that we have the following relation between x, 7, and #':

Fl=r24x2 2.4)

For Pluto, the effect of general relativistic bending of light
can be neglected, so that the deviation of the light ray from
its original path is due only to refractive gradients within the
atmosphere. The refraction angle is given by the r derivative
of the integral of the refractivity along the path of the ray,
which we convert to a form that will prove the most useful
later (Dwight 1961, Sec. 69.3):

9(r)=£-r° v[r(x,r)]dx
drJ_

=J’°° av[r’(x,r)]dx

ar
[ e,
or dr
_J r dv(r’) dx. (2.5)
0 r

Similarly, we find the line-of-sight optical depth by inte-
grating the linear absorption coefficient along the path of the
ray:

o (P) =f°° klF (x,1) 1dx. (2.6)

In Eq. (2.1) we specified the flux as a function of the
radius of closest approach to the center of the planet. To find
the normalized stellar flux, ¢(p), in the observer’s plane, we
add up the flux from all values of » that would arrive at p:

pp= 3 L. (2.7)

perpendicular
limb points

Near the limb of a large planet, or planets with extinction,
the light from all but the nearest limb is diminished, and only
one perpendicular limb point contributes to the flux in Eq.
(2.7). For the center portion of an occultation curve for a
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large planet or the entire occultation curve for a small planet,
light from both the near and far limbs make a significant
contribution. Finally, one must consider the contributions
from four perpendicular limb points within the evolute of the
central flash region for oblate planets (Elliot et al. 1977).

The flux recorded by the observer is an integral of ¢(p)
over (i) the spectrum of the occulted star and wavelength
dependent quantities in the light path, (ii) the angular distri-
bution of source intensity, and (iii) the telescope area. For
the Pluto analysis, the integrand would be constant—or at
worst linear—over the range of the integration variables, so
we can approximate the integrals as ¢(p) multiplied by a
constant. We represent the result as the unocculted flux of
the star, s, (), where the indicated time variability refers to
the unocculted stellar flux and does not, of course, include
any time variability due to the occultation. Time variability
in the unocculted stellar flux could arise from intrinsic vari-
ability of the star, changes in the extinction, telescope guid-
ing errors, or drifts in instrumental sensitivity. Similarly, we
denote the background signal as s, (¢), where the time vari-
ability could arise from similar causes as that for the unoc-
culted flux from the star. Having defined these quantities,
the signal, s(¢) that would be recorded by the observer from
a position p(¢), can be written as

s(8) =5, (Dlp()] +5,(2). (2.8)

Finally, the data are integrated over a short time interval,
so that our occultation dataset consists of a set of N integra-
not be contiguous, nor of eaﬁal length. If the ith integration
is centered on a time ¢;, and has a length At,, then the record-
ed signal for the ith integration, s; can be expressed as

t+ At/2
5 = J- s(t)dt. (2.9)
t;— Aty/2
In order to express the recorded signal, {s,},_, »,asan

,,,,,

explicit function of parameters that involve the planetary
atmosphere, we need an atmospheric model from which we
can calculate 6(r) and 7., (#); we also need to specify how
to find p(¢), s, (), and s, (#). These tasks are carried out in
the next three sections: we first specify an empirical model
atmosphere for the planet, then we calculate the flux in the
observer’s plane, and finally we combine these to find the
occultation flux as a function of time.

3. EMPIRICAL MODEL FOR THE PLANETARY ATMOSPHERE

A stellar occultation light curve is shaped by refractivity
gradients and extinction within the atmosphere of the oc-
culting body. Therefore, to construct a model for the occul-
tation light curve we require an atmospheric model for the
occulting body that specifies the number density of the gas
and the absorptive properties of the atmosphere. The most
desirable approach would be to formulate a physical model
for the atmosphere and then derive a light curve model that
would be a function of the parameters of the physical model.
Unfortunately our understanding of Pluto’s atmosphere is
insufficient at present to formulate a reliable physical model.
As pointed out earlier, we lack such fundamental informa-
tion as the identity of the major constituent of the atmo-
sphere and knowledge of whether the lower part of the occul-
tation light curve is dominated by the effect of a steep
thermal gradient or an extinction layer. Hence we turn to an
empirical atmospheric model.

Since a main objective of our work is to use stellar occulta-
tion data to ascertain the presence of thermal gradients, our
empirical model includes a thermal gradient. A thermal gra-
dient manifests itself in an occultation light curve as a gradi-
ent in scale height, so our model must also allow for a gradi-
ent in mean molecular weight, which could also cause a
gradient in scale height. An obvious choice for the functional
variation of temperature and molecular weight would be a
linear expansion about a reference radius 7,, but such a for-
mulation can lead to negative values of these quantities for
large or small radii, depending on the sign of the linear coef-
ficient. Another problem that arises with a linear formula-
tion is that the resulting expression for the number density
has an apparent singularity for a gradient of exactly zero.
The singularity can be avoided by taking a limit instead of
attempting a direct numerical evaluation, but this procedure
introduces undesirable complexity in the computations.

An alternative functional form that does not produce neg-
ative values and is more suitable to the spherical geometry of
our problem is a power law. We assume spherical symmetry
and specify that the mean molecular weight is iz, at the refer-
ence radius 7,. We can write the mean molecular weight,
1 (r) as afunction of the radius 7 from the center of the planet
and the power index a as follows:

u(r) =po(r/ry) —° (3.1)

For the values of 7, and a expected, u (#) will be essentially a
linear function over the range of interest, and the equation
for the gradient of the mean molecular weight at r, is

dp(r) — T (L)“’“ %o
r=rn Yo Yo .
(3.2)

dr r=r Yo
If the temperature of the atmosphere at r, is T, we write
the temperature as a function of altitude as a power law with
index b:

() =T, (L)b. (3.3)

Yo

We have chosen opposite signs for the power indices a and
bso that they both have the same sign in the ratio of tempera-
ture to molecular weight, since this ratio appears often in the
subsequent derivation. The gradient of the temperature at r,

18
bT, [ r\o—1
r="ro o \FH

If, as a result of fitting our model to data, we find statisti-
cally significant values for the second derivatives of molecu-
lar weight or temperature, we should then become con-
cerned about the bias introduced by our empirical model in
the specification of the functional form for these quantities.

Once we allow temperature and molecular weight to be-
come functions of radius, we must also be concerned with
specifying the correct radial variation of the gravitational
and centrifugal forces, so that improperly modeled radial
variations in these quantities do not become aliased as varia-
tions of temperature and/or molecular weight. The » ~ 2 de-
pendence for gravity has been included in previous modeling
for Pluto (Hubbard et al. 1988; Elliot et al. 1989), but the
centrifugal force arising from planetary rotation has not
been included—on the grounds that the ratio of centrifugal
force to gravitational force at the reference radius,

_ T . (3.4)

r=ry ro

dT(r)
dr
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’rY/GM p»isonly 2.5X 10~ * (G is the universal gravita-
tional constant, .# , the mass of the planet, and w the rota-
tion rate of the atmosphere). We shall, however, include
centrifugal force in our empirical atmospheric model so that
it can be applied in the future to planets that have significant
centrifugal forces in their atmospheres.

When planetary rotation enters the model, the planetary
atmosphere becomes oblate, and spherical symmetry no
longer exists. An exact solution for the occultation light
curve becomes more complicated, since (i) the refractivity
gradient in the atmosphere will not, in general, be coincident
with the radius vector from the center of the planet, and (ii)
the path of the starlight through the planetary atmosphere
may sample a range of latitudes, over which the angle be-
tween the refractivity gradient and the radius vector to the
center of the planet will vary. In order to avoid the problems
associated with an oblate atmosphere for this paper, we for-
mulate our model for an occultation in which the path of the
starlight always lies within the equatorial plane of the planet.
Although atmospheric oblateness introduced by the rotation
of Pluto is not large enough to be considered in our analysis,
spherical symmetry of its atmospheric structure may be vio-
lated if the atmosphere proves to be significantly oblate due
to unequal heating at the poles and equator.

Having specified the radial dependences of molecular
weight and temperature, we now proceed to derive an equa-
tion for the pressure of the atmosphere p(7) that will be valid
at the equator if the atmosphere is in hydrostatic equilibri-
um. If m,_,, is the mass of one atomic mass unit and n(r) is
the number density at a radius 7, then the change in pressure
dp(r) over an increment of radius dr must balance the sum
of the gravitational and centrifugal forces on the gas within
dr:

dp(r) = — (G{" — wzr),u(r)mamun(r)dr. (3.5)
r

We next write the relation between pressure, number den-
sity, Boltzmann constant &, and temperature 7'(r) given by
the perfect gas law

p(r) =n(r)kT(r). i (3.6)

Dividing Eq. (3.5) by Eq. (3.6), we obtain a differential
equation for the pressure:

wzr:u'(r) Mamu

kT(r)

dp(r)»___ _ GAM u(r)mypy, dr
p(r) kT(r)r?
(3.7

To allow the integration of the right-hand side of Eq.
(3.7), we substitute the power law relations for mean molec-
ular weight and temperature, Egs. (3.1) and (3.3):

dp(r) _ _ GA ploMamy {L)-(ﬁa”)dr
p(r) kT,r:  \r
: 1—(a+b)
wm(_’_) T 3.8)
kT,  \r

We can consolidate most of the constants in Eq. (3.8) by
defining the quantity A, () as the ratio of the magnitude of
the gravitational potential energy (referredtoOatr = « ) to
kT:

GAM ,u(r)m F\=U+a+h
A =—2Ff " T = , (39
«(7) kT(r)r & (ro> (3-9)

where we introduce the quantity A, as the value of 4, (7) at
the reference radius:

G‘/% p:uO mamu

Ao=A (1) =
w0 =44 (7o) kTyr,

(3.10)

Similarly, we define the quantity A, (7) as the ratio of the
magnitude of the centrifugal potential energy (referred to O
at r = 0) to k7, and the value 4, and the value of 4, (r) at
the reference radius:

2y 2 2—(a+b)
,1w(r)=%=,iw (L) . (3.11)
2kT(r) 7
wzr(z)lu'omamu
2kT,
Using these, Eq. (3.8) for the pressure derivative becomes
dp(r) _ _ Ag (1) dr+ 24,,(r) dr
p(r) r r
—(24a+b)
J— @(L) et dr + 2/1("0
Yo \7o "o

1—(a+0b)
X(L) dr.
To

Except whena + b = — 2 or 1, the integral of Eq. (3.13)
is given below, where we have introduced p, (the pressure at
ry) as a constant of integration. Whena +b=2or — 1,
then the equation will yield the correct result if we take the
limit (@ + b)—>2o0r — 1.

/lgo rF\—U+a+b
r) = pyexp{ ——— || — —1
Py =po p{1+a+b[(ro) ]

2, F\2—(a+b
—_—|— —11. 3.14
el e

Our next task is to find the number density. First, we de-
fine the number density at the reference radius to be n, and
obtain its value from Eq. (3.6):

Ao =4, (1) = (3.12)

(3.13)

no=n(ry) = po/kT,. (3.15)
Combining Egs. (3.6, 3.13, and 3.14), we obtain an equation
for the number density

—b —(1+a+b
o= () Ceolrreg ()T
Ty 14+a+b [\r

2,{(00 r\2—(@+b
(= —1]t. 3.16
+ 2—(a+b) [(ro) ” ( )

For bodies with “slowly rotating atmospheres” (Pluto,
Triton, Titan, and Venus), the ratio of centrifugal force to
gravitational force (w’r §/G.# ,) is small enough to neglect
the rotation term in Eq. (3.16) and still maintain adequately
high precision in our model. In the interest of minimizing the
complexity for the Pluto analysis carried out in this paper,
we drop the rotation term here and are left with the following
expression for number density:

F\-? ,{go Y- U+a+d }
= —_— —_— -1
) =t ("o) eXP[ 1+a+b [(ro) ]

r\- (Ag(r)—,igo)
= . & T8, 3.17
o ("o) exp {tath (3.17)
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Note that the final expression for the number density on the
right-hand side of Eq. (3.17) reduces to that used by Elliot ez
al. (1989) and Hubbard ez al. (1988) for the case of no
thermal or molecular-weight gradients (¢ = b = 0).

The refractivity of the atmosphere as a function of radius
v(r) will depend on what gases comprise the atmosphere
and their number density. If vgrp (7) is the refractivity of the
atmospheric gas for standard conditions of temperature and
pressure and L denotes Loschmidt’s number, then we have

v(r) =n(r)V5Tp(r)/L- (3.18)

Specifying the radial dependence of vgrp (#) would re-
quire some specific assumptions that would be interconnect-
ed with the radial dependence molecular weight [Eq.
(3.1)]. Since these would lead us into much more detail than
we can learn from the presently available Pluto stellar occul-
tation data, especially considering the similarity of vgp for
the gases most likely to be in Pluto’s atmosphere, we assume
that vgrp (7) changes negligibly within the radial range of
interest:

Vstp () = Vsrp.
We define the refractivity at the reference radius as v,:
(3.19)

Now we can write the equation for the refractivity for our
empirical atmospheric model:

() m)—igo)
v(r)_vo(ro) exp( I Tatb .

Later we shall need expressions for the pressure and num-
ber density scale heights, and it is most convenient to obtain
them here. The local pressure scale height H, (r) is given by

1 dp(r)\! r
H,(r)= — = .
»(1) (p(r) dr ) Ag(r) —24,(r)

3.21)

The number density scale height H, (r) is defined analo-
gously to the pressure scale height. For constant vgrp, the
refractivity scale height equals the number density scale
height.

Vo =v(7y) = nyvsrp/L.

(3.20)

H,(n = — (12

n(r) dr

__( 1 dp(r) _ 1 dT(r))—l
p(r) dr T(r) dr

_ r

A (N —24,(n +b

(3.22)

Note that the number-density scale height equals the pres-
sure scale height for an isothermal atmosphere (b = 0), and
it is smaller than the pressure scale height when the tempera-
ture is increasing with altitude (4> 0).

In order to use our model for fitting the Pluto light curve,
we must allow the lower part of the model atmosphere to
haveeither (i) a haze layer (Elliot er al. 1989) or (ii) a sharp
thermal gradient (Eshleman 1989; Hubbard ez al. 1990). As
discussed earlier, the correct choice has not yet been estab-
lished, so for our present purpose we shall use the haze mod-
el because it is easier to implement analytically. We define
the haze layer with three parameters: (i) 7, , the radius of the
upper boundary of the extinction layer, (ii) «,, the linear
absorption coefficient of the haze at r,, and (iii) H_,, the

A
T = Ty(rim)° “X"

W) = polrirg)
forces on a volume element:

Radius, r

centrifugal force,
A pressure

\
\

gravity
clear

l' ‘\
h \
1 rmeanton N
; haze 5 - (r—nj
ry —em 2 X x(n) = x1 exp ~ 1
; ‘; , Hul(rn)]
A ' o
- o " — o
»

Temperature, T{r) Linear Absorption Coefficient, x(r)
Molecular Weight, p(r)

FIG. 2. Empirical model atmosphere. The temperature and mean mo-
lecular weight of the atmosphere are power law functions of the radial
distance from the center of the planet, and the number density as a
function of radius is derived from the assumption of hydrostatic equi-
librium. An extinction layer exists in the lower part of the atmosphere,
and it has a linear absorption coefficient x(r) that is an exponential
function of radius 7. This atmospheric model is used for calculating the
model light curve that is used to fit the stellar occultation data.

scale height of the haze at , . Allowing the scale height of the
haze to have the same radial dependence as gravity, we have
the following equation for the linear absorption coefficient,
K(r), of the haze:

O r>r1,

Kk(r) = % exp(_]jr:r;;))) r<r,.
71 1

This completes the specification of our empirical model
atmosphere, which is summarized schematically in Fig. 2.
The main results of this section are Eq. (3.20), which speci-
fies the radial dependence of the refractivity, and Eq. (3.23),
which specifies the radial dependence of the extinction.

(3.23)

4. STELLAR FLUX IN THE OBSERVER’S PLANE

In this section we calculate the flux received in the observ-
er’s plane given by Eq. (2.1) in terms of the empirical atmo-
spheric model of Sec. 3. Hence equations in this and subse-
quent sections apply to our specific model for the
atmosphere. We begin by finding the refraction angle for a
light ray passing through the planetary atmosphere. Using
the expression for the refractivity, v(r), given by Eq. (3.20),
we take the derivative of the refractivity required by Eq.
(2.5) and express the result in terms of the energy ratios,
Ag(r)and A, (7):

o(r) = ()Jw AN
n=-vn| (7)

Xexp(/lg(r/) —/lg(r)) A (F) + b
I1+a+b

In the large planet limit (7> H,[r]), the integrand becomes
a Gaussian, exp[ — (x/r)’4,(r)/2], equivalent to that de-
rived by Baum & Code (1953).

Our approach to the small-planet problem is to find power
series approximations in terms of the parameter
6=1/4,(r). We shall find it useful to express § in forms
involving the pressure scale height due to gravity alone,
H,, (r), and the values of these quantities at the reference
radius (A, and H,y):

dx. 4.1)

r
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6_ 1 1 (r)1+11+b
_ig(r) N Aw \7o

_Hpg(r) __Hng (r)l+a+b

r ro \7

(4.2)

We note that § becomes small in the large planet limit, but
it cannot be set to zero wherever it occurs, since the plan-
etary atmosphere will always have some finite pressure scale
height that cannot be ignored on the time and distance scales
of interest for the occultation light curve. Hence we have
adopted the convention, for equations expressing final re-
sults, of using § in expressions where it is added to larger
terms and can be set to zero in the large planet limit. How-
ever, we use A’s and H'’s in those parts of the expression
where these quantities should be retained in the large planet
limit.

To perform the integrations in this paper, we generally use
the following steps; first, factor the large planet solution out
of the integral; second, change variables so that the lead term
in the exponential will be Gaussian, and factor out of the
integral the resulting terms that do not depend on the vari-
able of integration; third, expand the integrand as a power
series in &; fourth, perform the integration. The result of the
integration will be a power series, with a leading term of 1.

Following these steps to carry out the integration in Eq.
(4.1), we first define a new variable of integration, y:

y=(x/r)\y1/26.

The integral of Eq. (4.1), expressed in terms of y, becomes

(4.3)

0(r) = —v(r)\24,(r) Jw (14 28y%) ~@+o72

2\ — (1 +a+b)/2
><exp((l +28y%) " et D2 1)
(1+a+b)s

X[ (14262~ +a+72 4 5b1dy. (4.4)

Expanding the integrand as a power series in 8, we obtain

0(r) = —v(r)21,(r) r e
x{1+ [b— (3 +a+2b)y?

+ (—3—+a—+b) y“]é + 0(52)}dy-

4.5
2 (4.5)

After performing this integral, we find that 8(#) can be
expressed simply as '

0(r) = —\[2mA (r)v(r)A(8,a,b), (4.6)

where 4(6,a,b) is a power series in § that is given to fourth
order in the Appendix, Eq. (A2). We note that 4(8,a,b) — 1
as 60, so that we can set 4 (6,a,b) = 1 for the large-planet
case.

Since 6(r) usually appears multiplied by D /7, it is conve-
nient to have an expression for this quantity in terms of the
fundamental parameters of our model. Substituting Eqgs.
(3.20) into (4.6), we have

DO(r) _ _Dvo,/27rigo (_r_)—(3+a+3b)/2

r o o

A
X exp{+‘°
l1+a+b

r\-QQ+a+d ‘
% [(_) - 1”A(6,a,b). @7
o

Later, we shall need Eq. (4.7) evaluated at the reference
radius, which is as follows:

Dé, _ Dvo,/21rﬂ.go AS.ab)

Yo To

(4.8)

We shall also need the derivative of the bending angle. We
calculate this by taking the derivative of Eq. (4.6) and again
using a power series B(68,a,b) that equals 1 in the limit § -0,

Eq. (A6).
_dﬁ;(_r)_ =274 (r) MB(&,a,b).
r r

Expanding Eq. (4.9) and including a factor D that will be
needed later we write the equation for the derivative of the
refraction angle in a form similar to Eq. (4.7):

(4.9)

)— (5+3a+5b)/2

D48 D oo (-
r ¥,

Yo o

/180
X exp{ ————
xl){1+a-i—b

r\— (1+a+b)
x[(—) - 1”3(5,a,b). (4.10)
Yo
The expression for Eq. (4.10) in terms of the refraction
angle is
pdo(n _ _ Db(r) Ag(r)B(,a,b)
dr r A(Sab)
The observed optical depth is related to the linear extinc-
tion coefficient by integrating along the path of the light ray
through the atmosphere with closest approach 7. The inte-
gralis given in Eq. (2.6) and the linear absorption coefficient

is given in Eq. (3.23). Combining the two, we obtain the
following expression for 7, (7):

X1 (r—r))
Tops (7) =J K exp( — ——-———1—) dx,
” —x l H, (r/r)
where x, is the point on the x axis where the light ray crosses
the top of the haze.

x,=x(r)) =4ri—r2 (4.13)

We perform this integration with the same procedure used
for the refraction angle and its derivative. First, factor the
leading terms out of the integral, so that the integrand equals

1 at x = 0, and rewrite the integral in x = /7> — 7 2.

(4.11)

(4.12)

Tobs (1) = K(7)

. [ ri 1
exp ( — 1) ] dx.
—x L Har \JT¥ (/)2
(4.14)
Once again, we change variables so that the lead term is
a Gaussian. Using the haze expansion parameter
8,=H, r/r?, the new variable of integration is
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y=(x/r)J1/25,.

so that Eq. (4.14) becomes

(4.15)

Tops (7) =K(r)L 2H r
¥

7l
1

V1

XJ- exp[i (——1—- — 1>]dy. (4.16)
—N 61 1}1 +257.y2

Still following the same procedure outlined for the 6 inte-

gral, we expand the integrand into a Gaussian, exp[ — 3?1,
multiplied by a power series in §.,.

iql
Tobs(r)zK(r)L\IZHflrJ e_yz
r -»n

4 6 8
X[l + ¥ +(_—5y—+—9—y—)5i + ~~~]dy.
2 2 8
(4.17)
The integration can now be performed in terms of the
error function, erf, using the definite integral in Eq. (4.18),
which has been derived through integration by parts and

applying the definition of I'(n + 1/2) (Dwight 1961, see
Sec. 590 and Sec. 250.8):

f t"e_‘zdt=l‘(n;:1>erf(x), (4.18)

|

[r, (rf —r
erf| —
r\ 2H,r

2

172
) Jec

Tows (F) = k(r) = J20H .7
r

1

2 _ \12
><erf[r—1(r21 - ) ]C(&),

r At

(4.19)

where C(6, ) is a power series, and C(4,) — 1 for §, -0, Eq.
(A7). We expand Eq. (4.19) into a form that will be most
useful for subsequent calculations:

0 r>ry,

Tobs (7) = . ro(r? — p2\122
K, —~27H _ rerf [-—1-( 21H r ) ]

¥y r

l_—")—] C(8,) r<r. (420
H,(r/r)

We shall also need an expression for the optical depth in
terms of the radius, #,, at which the observed optical depth
along the path of the starlight is unity. In this form we elimi-
nate the constant «, from the problem by setting the condi-
tion that the observed optical depth is 1 for » = r,. For this
form we shall define §,, =8, (r,) = H,,/r, = H,r,/r}.

2 2\1/2
r rnfry—r;
Tows (1) =1=x, =/27H_,r, erf| — | ——=—
obs 2 1 7172
8} n\ 2H,r,

xexp[ —

xexp| — ('z_r‘))]cwﬂ). (4.21)

H_ (r,/r
We use Eq. (4.21) to eliminate «, from Eq. (4.20).

r>ry,

(4.22)

Tovs (1) = (L>3/2exp i (i__l_)]
7 Hy\r n

For the 1988 Pluto occultation, the light-curve flux be-
comes negligible well before mid occultation, implying that
the flux from the opposite limb can be neglected. To a good
approximation, therefore, each point in the observer’s plane
receives stellar flux from only one radius within the plan-
etary atmosphere, and we can use Eq. (2.2) without the ab-
solute value bars to find p(7):

p(r) =r+ DO(r). (4.23)

Then, the ratio r/p(r), required by Eq. (2.1), is found by
solving Eq. (4.23):

r 1
p(r)  14+DO(r)/r'

In this model for Pluto we include the refracted flux from
only the near limb. Thus, {(7) = ¢(r), and the final equa-
tion for the flux is

o(r) =

(4.24)

eXp[ — Tops (1) ]
[1+D6(r)/rl[1+ Ddo(r)/dr]
The numerator and the two bracketized terms in the de-

nominator of the right-hand side of Eq. (4.25) are obtained
from Egs. (4.7), (4.10), and (4.20).

(4.25)

rfri—r?
erf| — | —————
rn\ 2H,r,

r<ry

172
) ] C(61'2 )

r
We can now calculate the refracted stellar flux for any

radius r within the planetary atmosphere with Eq. (4.25)
and find the corresponding observer radius in the observer’s
plane, p(r), with Eq. (4.23).

So far in this section we have assumed that the calculation
proceeded with known parameters of the model atmosphere.
However, we may want to leave the reference refractivity v,
unspecified and instead set the condition that the focused,
refracted stellar flux is a specified value fat a specified radi-
US, 742 Grer r=rer (7) = f, where 0 < f< 1, and ¢, refers to
the refractive flux. A common choice is f= 1/2, for which
we denote 7, by 7, (the “half-light” radius). We set up an
equation for v, by considering the refraction terms only (no
extinction) and using Eq. (4.11):

1
f= ,
( |, Dow) ) ( | Doty /lg,B(éf,a,b))

7y A(6,,a,b)

r (4.26)
where§,=06(r;) and A =4, (r;). If A, and r, are specified,
this can be solved numerically for r;, using Egs. (3.9) and
(4.2) to find A, and &;. If A, is specified, this equation is
quadraticin DO(r,)/r,. The positive root is taken, so that the
large planet limit for the case of f= 1/2is D8, /r, = — &,,.
The solution is

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992AJ....103..991E&db_key=AST

FT992AT.- - CI03: Z991ED

999 J.L. ELLIOT AND L. A. YOUNG: STELLAR OCCULTATIONS BY SMALL PLANETS 999
Do [ 4(5,,a,b A(5pa,b A(6ya, 2
__JI_:L £_1+ 1+(2_i) (8,a,b) ( (5,0,b) )] (4.27)
vy 2 LA B(6pa,b) [/ AgB(81,a,b) AgrB(8,,a,b) '

We then solve Eq. (4.6) for v, and substitute the expression for D6(r,)/r,from Eq. (4.27) to get an equation for v, in terms

of the radius and energy ratio at a specified flux level:

’ A (6/‘,ayb)

A(6p,a,b)

<

1229000 [y (2 - i)
Ay B(8,a,b) 7) AgB(8,ab)

+( A(8,,a,b) )2]
AgrB(610a,b)

v(r,) =

2D 2724 A(8))

. (4.28)

Therefore, when parameterizing the clear atmospheré, we can specify either the reference refractivity v, or the reference flux

level f.

5. LIGHT-CURVE MODEL

We use the term “light-curve model” to mean a prescrip-
tion of calculating the stellar flux recorded by the observer as
a function of time. In Sec. 4 we calculated stellar flux in
terms of the radial coordinate r of the closest approach of a
light ray to the occulting planet, but for a light-curve model
we must be able to calculate the stellar flux in terms of the
radial coordinate p of the observer in the observer’s plane.
Specification of p as the dependent variable introduces only
one extra step in calculating the stellar flux: we first find
r(p), and then we calculate the flux with the equations in the
previous section. Since our model has spherical symmetry,
the angular coordinate paired with either 7 or p is of no con-
sequence. The radii #and p are related by Eq. (4.23), and we
solve this equation for r(p) with Newton’s method—a
straightforward process, since the function is monotonic.

To complete our light-curve model, we need to find the
flux for a given time ¢(¢). Although it would be possible to
work in observer-plane coordinates, ¢(p), the time coordi-
nate is that for which the data are known directly. Further-
more, the integration intervals are usually evenly spaced in
time, so that interpolating functions of the the model are
easily formed. Calculating the model in terms of time adds
another step: to find the observer’s radial coordinate as a
function of time, p = p(#). This can be done through astro-
metric calculations, in which occultation chords from sever-
al stations are used to find the center of the shadow in time
and space (Millis et al. 1992). Defining the position of the
chords in the observer’s plane requires some preliminary in-
formation from the light curves from each station, such as
the times for a given flux level. Usually the times of half-light
are used, but the times for the 0.764 flux level were used by
Millis et al. (1992) for the Pluto case, since several stations
were not sufficiently within the shadow for the flux to drop
to 1/2.

A good approximation for the KAO position within Plu-
to’s shadow for the 1988 occultation is a straight line
through the shadow in the observer’s plane, with a constant
velocity v. If p,.,;, is the radius at the closest approach of the
observer to the center of the shadow and ¢,,;, is the midtime
of the occultation (when p = p,;, ), the equation for calcu-
lating the observer’s radius p(?) is

P(8) =\ Prn + VP (t — tmia)”. CRY
We emphasize that this specification for p(¢) is an adequate
approximation for the KAO light curve, but one can readily
calculate p(#) with a more elaborate astrometric calculation
for occultations for which nonlinear terms are significant.

Having written Eq. (5.1), we can now calculate a light
curve in terms of a fundamental set of parameters, which we
shall call the “atmospheric parameter set,” summarized in
the first column of Table 1. We have divided these param-
eters into four groups: (i) signal levels, (ii) geometry and
data recording, (iii) clear atmosphere, and (iv) haze. From
knowledge of all the parameters in this set, we can calculate
an occultation light curve with equations given previously.

Now that we can calculate the model stellar flux as a func-
tion of time, we show an annotated example of such an occul-
tation curve in Fig. 3. In anticipation of fitting this model to
data, we seek an alternate set of parameters that describes
the model light curve in terms of times and signal levels in-
stead of atmospheric parameters. Of course this set of “data”
parameters can be calculated from the “atmospheric” set.
We have adopted the following criteria for selecting the data
parameter set: they should (i) be well defined by the features
in the data, (ii) have low correlations when fit to the data,
(iii) be more readily comparable with other results and pre-
viously published work (such as half-light times for immer-
sion and emersion), (iv) allow for individual fits to immer-
sion or emersion, and (v) impose symmetry between
immersion and emersion when the entire light curve is fit.

We have formulated a set of data parameters that satisfy
these criteria, as illustrated in Fig. 3 and summarized in col-
umn 5 of Table 1. The parameters fall into four categories:
(i) signal levels, (ii) times of events on the light curve, (iii)
time scales of the refractive and extinction occultations, and
(iv) parameters that affect the shape of the shoulders of the
light curve.

The parameters specifying signal levels are the back-
ground level s, the background slope s;, and the full scale
level s,. The first two of these comprise a linear approxima-
tion to s, () in Eq. (2.8). We use the midtime of the dataset
t,,, rather than the midtime of the occultation, as the refer-
ence time for the background slope in order to minimize the
correlation of this with other model parameters. This is the
average of the time of the first data point ¢, and time of the
last data point 7.

tav = (tl +tN)/2, (5.2)

55 () =8, +5,(F —1,)- (5.3)
The average full scale level is the sum of the star and back-
ground levels:

S,=5, +5,. (5.4)

Included in the choice of critical times are the immersion
and emersion half-light times, #,,, and z,,,,, for the differential
refraction occultation. The half-light times have been used
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TABLE 1. Summary of parameter sets.

Atmospheric Parameter Set Data Parameter Set
Primary Intermediate Eq.  Name Primary Intermediate Eq.  Name
Member Quantity Member Quantity
Signal Levels
Sp background level Sp background level
Sp' background slope Sp' background slope
Sk (5-4) star level S (5-4) full-scale level
Geometry and Data Recording
D planet-observer distance D planet-observer distance
v shadow velocity v shadow velocity
At integration time At integration time
Pmin (5-8) minimum observer radius Tmin (5-8) minimum observer radius
Imid (6-1) midtime
Clear Atmosphere
a exponent for molecular weight a exponent for molecular weight
b exponent for temperature b exponent for temperature
ro reference radius f flux level for i, fem
Ph (6-2) half-light observer radius h (4-25) half-light radius
Vi, h (5-9) perpendicular velocity at pp [ (4-7) half-light observer radius
Th } (6-3)- half-light radius Vi h (5-9) perpendicular velocity at pp
Agh (6-5) half-light energy ratio Agh (6-6) half-light energy ratio
Ago (6-6) reference energy ratio I-ﬁso (5-13) isothermal scale height
Vh (4-28) half-light refractivity THiso (5-14) refraction scale interval
Vo < (6-7) reference refractivity tim (5-5) immersion half-light time
tem (5-5) emersion half-light time
Haze '
Hyy (6-6) haze scale height ry (4-21) T =1radius
r (5-1) top of haze THz (5-16) haze scale interval
r (5-1) t=1radius Th,2 (5-6) T=1linterval
X1 (6-20) linear absorption coefficient Thi (5-7) haze onset interval

by previous models. We choose the half-light times of im-
mersion and emersion rather then the midtime and interval
to half-light in order to easily fit immersion and emersion
separately. In order to write equations for the immersion and
emersion times, we first find the radius at half-light »,. This

half-light radius
onset of haze:
So+ S fooo L
: optical depth = 1 ]

4 #
S A
i\ /--.. refraction only .- :

\,._refraction + extinction

Signal
n

PR H
tm tm+ Thz | tem = Th2 fom
o+ Tht trid tem = Th,1

Time

F1G. 3. Data parameters for a stellar occultation light curve. Signal level is
plotted vs time for a complete occultation light curve—both immersion and
emersion. In this example, the stellar flux drops to the background level s,
at midoccultation. If no extinction were present, the light curve would fol-
low the dashed line labeled “refraction only.” The times (#,, and t,,, ) when
the stellar flux has dropped to half of its unocculted value corresponds to the
“half-light” radius on the planet. The times corresponding to the onset and
optical depth 1 of the haze are also indicated.

can be found by inverting Eq. (4.25) with f= 1/2. Then we
find the half-light radius in the observer’s plane p,, with Eq.
(4.23). The values of ¢, and ¢,,,, are given by the subsequent
two solutions to Eq. (5.5), which we write by solving Eq.
(5.1) for ¢, with the negative solution corresponding to the
immersion time for a given p and the positive solution corre-
sponding to the emersion time:

t(p) = tmid + sz —pznin /v. (5‘5)

Two other light-curve parameters are the time interval
between half-light and haze onset T, ,, and the time interval
between half-light and unit optical depth T}, , . These param-
eters have been specified as intervals (rather than specific
times) in order to impose symmetry between immersion and
emersion. These time intervals are obtained from knowledge
of r,, r, and r, with Egs. (4.23) and (5.5).

T,, = It(Pl) —t(p)|, (5.6)
T,, =|t(p,) —tlpy)|, (5.7)

where p, =p(r,),p, =p(r,), and p, =p(7r,).

In order to express all spatial coordinates as times or time
intervals, scale p,.,;, by the velocity, and use the time interval
T,

Toin = Prmin/V- (5.8)

The time scale of the clear atmosphere occultation is de-
termined by d¢/dr at half-light. Noting that
d¢/dt = (d¢/dp) (dp/dt), and that dp/dt is the velocity of
the planet perpendicular to the limb, we define the perpen-
dicular velocity at 7,,, v, .

[ 2 2
dp =v,, =UM. (5.9)

dt lr=n, Pr
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The other factor in the derivative is

d¢ 1 ( 14+ 3a+5b 2)
— = 1 85, +0(5;) ).
dplrer, " 3H, + > » + 0(5;)

(5.10)

We define the equivalent isothermal scale height H,,, as
the scale height of an isothermal atmosphere with constant
molecular weight that would produce a light curve with the
same slope at half-light as the nonisothermal atmosphere.
The relationship between H, and H,, is obtained by setting
a=b=0in Eq. (5.11).

1 (1+ 1+3;+5b5h+_”)

8H,
1 1
= 1+—6, +),

8H. (+2 nt )

iso
so that

(5.11)

H, = 4,
" 14 [(3a+5b)/218, + -

This equation is more useful as a relation between the en-
ergy ratios:

(5.12)

A=A, (ry) =

+ 0(6,).

'n  3a+5b (5.13)
— .

H

This illustrates how the shape of a light curve for an atmo-
sphere with a varying scale height is similar to that for a
constant (but different) scale height (Goldsmith 1963). In
anticipation that H;, would be more robust in fitting than
H,, we defined our time scale of the occultation T, , by the
scaled equivalent isothermal scale height.

Theo = Higo /U1 (5.14)

Next we define an extinction scale height H, at the radius
ry

H,=H,(r,) =H, (r,/r,)% (5.15)

Analogous to the procedure for refraction scale height, we
scale the extinction scale height by the reference perpendicu-
lar velocity to get a time scale of the haze T},,,,

Ty, =H,/ v, (5.16)

The shape of the shoulder is determined by the minimum
observer radius and the exponent for temperature or molec-
ular weight variation, b or a. The parameters @ and b are used
in the data parameter set with the same definitions as in the
atmospheric set.

This completes our specification of the data parameter set,
givenin column 5 of Table 1. The equations used for convert-
ing from the atmosphere set to the data parameter set appear
in column 7 of Table 1.

6. QUANTITIES DERIVED FROM FITTED PARAMETERS

We shall be fitting our light curve for the data parameter
set in Table 1, but for calculating quantities that describe
physical properties of the occulting atmosphere, we need to
specify procedures for calculating the atmospheric param-
eter set from them—the inverse of the equations developed
in the previous section. In this procedure, we must also cal-
culate errors and correlation coefficients for the atmospheric
parameters.

We begin with the midtime of the event, the average of the
immersion and emersion half-light times:

tmid = (tim + tem )/2 (6.1)

The normalized stellar flux ¢(p) is a function of 7y, v,,
A @, and b, as derived in Sec. 4. Often, the reference radius
is specified to be half-light. However, we chose to specify our
reference radius to be a value near half-light, comfortably
above the haze. Since the radius of half-light will vary from
occultation to occultation, we felt this was preferable. In
addition, the lack of an error bar on the reference radius
simplifies the propagation of errors in further calculations.
To convert from ¢, ., and Ty, 10 7o, Vo, and Ay it is
useful to first calculate the half-light quantities, 7, and A, .
We start with the observer radius at half-light p, .

Pr = \/p?nin + Uz(tem —lim )2/4’
which we can use to find v, , with Eq. (5.9).
The problem of finding 7, and 4, has to be solved numeri-
cally, for which we used the method of successive substitu-
tion. The initial guess for the half-light radius is the large
planet solution:

(6.2)

Taety = Pn + Hios (6.3)

where H,, is found by Eq. (5.14). In each succeeding iter-
ation, the energy ratio for the ith iteration is found by Eq.
(5.13).

_3a+5b
—
The expression D@, for the ith iteration is found by apply-

ing Eq. (4.26). The new half-light radius is found from the
bending angle and the specified p,:

p) Ty
gh(i) =
H,

iso

(6.4)

(6.5)

This iteration continues until |7, , 1, — Fy(iy |/7aco 18 less
than a specified precision. Once the bending angle at half-
light is known, the refractivity at half-light v, can be calcu-
lated using Eq. (4.28). The reference quantities are now

Tniiv 1y =Pn — DOy

/180=ﬂg,,(r0/rh)_“+a+b) (6-6)
and
)2 (/lgo—ﬂ.g,,-)
Vo =V, | — — ). 6.7
() h("h) exXp ltatb (6.7)

With these, finding 7, and r, is the standard calculation
for finding r(#): first find p(¢) with Eq. (5.2), then find r(p),
by solving Eq. (4.23) with Newton’s method. In the data
parameter set, the fitted haze scale height is defined at r, ; for
the purpose of defining a quantity at a definite radius (that is
independent of the occultation geometry) we convert this to
the haze scale height at 7, :

H, = Tgy,v ,(r/n)~ (6.8)

Givenr,,r,,and H,,, wecanfind x, from Eq. (4.21). The
preceding prescription for converting the data parameters to
the atmospheric parameters is summarized in column 3 of
Table 1.

To find the errors and correlations for the atmospheric
set, we use the equation of error propagation from M corre-
lated observables to M parameters (Clifford 1973). Here,
the two sets of M parameters are treated as column vectors.
For the dataset parameters, we define the column vector d,
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and for the atmospheric parameters, we define the column
vector a. The components of these vectors are the symbols in
columns 1 and 5 of Table 1. The variance-covariance matri-
ces are M, and M,, so that M,; =var[d;] and
M, ; = cov[d,,d;]. If B is the derivative matrix,

_ da;
Y od;’

then the variance-covariance matrix for the atmospheric pa-
rameters in terms of the fitted, light-curve parameters is giv-
en by the matrix equation

M, = BM,B",

where B” denotes the transpose of B.

From these new parameters and their errors, we can find
quantities of interest at half-light: the gravitational accelera-
tion g,, the pressure scale height H,, the ratio of tempera-
ture to molecular weight, the thermal and molecular weight
gradients, and the number density and pressure:

B (6.9)

(6.10)

8 =GA /15, (6.11)
Hy =ry/Aq, (6.12)
I?_= G‘/pmamu — gOHpOmamu , (6.13)
o krodgo k

L1dTtn| _b (6.14)
T dr r=ry o

laun| __a (6.15)
uoodr lr=n 7y

The number density at the reference radius, n,, can be
found from the refractivity at the reference radius:

ny = L(vy/Vsrp)- (6.16)

We substitute Eq. (6.16) into the perfect gas law, Eq. (3.6),
to get the pressure at the reference radius p,:

Do = L(vy/Vsrp kT, (6.17)

Given n, and p,, we use Egs. (3.14) and (3.16) to get n(r)
and p(r).

To find the column height above radius 7, we integrate the
number density from 7 to the top of the atmosphere, math-
ematically to infinity.

§(r) =%f° n(rydr
© b
-] ()
1+a+b
X exp{-—ig—o——— [(-"3) B 1]}dr’.
l4+a+b L\7F
(6.18)

In the large planet limit, the integrand is exp[ — ] and
the equation for the column height is £(r) = H,on(r)/L.
Following the procedure in Sec. 4, we factor the large planet
answer out of the integral, and perform a parameter change,
so the integrand will be in the form of an exponential times a
power series. In this case, the change of variables is

u= (" —r)/br. (6.19)

Making the substitution and factoring H,,n(r) = érn(r)
out of the integral, the column height is

g(r) =MJ‘°° (1+5u)—b
L o

—(l+a+b) __
(1 + du) l)du.

X
exP( (1+a+b)s

(6.20)

Once again, still following the procedure used for 6(r)
and 7, (), we expand the integrand in a series in §. As
before, this integration results in a series in 8§, which has a
lead term of 1. The result of this is the column height, given
here to second order in 6. Notice that, to first order in 8, the b
dependence of £(7) enters only in the expression for n(r).

H,,n(r)

&) = [1+@2+a)

+ (6+Ta+2a*+2b+ab)d*+ ---]. (6.21)

7. NUMERICAL IMPLEMENTATION OF THE LIGHT-CURVE
MODEL

We have implemented our model in Mathematica™ ver-
sion 1.2.2 (Wolfram 1988; Maeder 1990) and have carried
out the numerical calculations on several Macintosh™ II
series computers. This combination has 19 digits of precision
for numerical calculations. For our purposes, the integrated
signal [ Eq. (2.9) ] was well approximated by the value of the
model at the midtime of the interval, except for the integra-
tion interval containing the haze onset and the adjacent inte-
gration interval corresponding to a lower level in the atmo-
sphere. For these two cases, the model was calculated by
integrating the second degree interpolating polynomials. In
the bin containing the onset of the haze, two abutting poly-
nomials were used, one for the clear portion and one for the
portion with the haze. The flux was evaluated at the haze
onset, the bin boundary, and the point midway between
those. For the other integration interval, one polynomial was
used, with model calculations at the two bin boundaries and
the bin midtime.

Toillustrate the appearance of light curves from planets of
different radius-to-scale-height ratios, we have displayed
light curves for different ratios A, in Fig. 4. The light curves
have been positioned so that their half-light times and equiv-
alent isothermal scale heights correspond. The most striking
change is the higher level of the light curves corresponding
to smaller planets, due to the focusing term. If the time axis
extended further, all the curves would eventually rise as
times corresponding to the center of the planet were ap-
proached. However, the minimum of the light curve be-
comes lower for larger planets.

We show the effect of a temperature gradient on the shape
of the light curve in Fig. 5, by calculating the model for
different values of the temperature power index b [see Eq.
(3.3)]. Note the different effect of large positive and nega-
tive values.

For the purpose of comparison with other numerical mod-
els, we present in Tables 2, 3(a), and 3(b) a benchmark case
for a planet with a A similar to Pluto’s. The results of this
calculation have been displayed to seven digits for different
orders of the power series. Note that most of the gain from
the power series is achieved with only the first term. We
include the flux due to differential bending alone, @.,,; this is
the “cylindrical-planet” approximation (Elliot et al. 1989,
see their Appendix).
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FIG. 4. Occultation light curves for small
and large planets with isothermal atmo-
spheres and no extinction. An occultation
light curve for the limit of a large planet is
shown by the solid line in the upper panel.
The ratio of the planet’s radius to its scale
height is equal to A [Eq. (3.9)]. The lar-
gest effect of a small planet is the rise in
signal after the main drop, which is due to
the focusing effect of the shrinking occul-
tation shadow. For all planets, the light
curve reaches a minimum at an observer
radius of about half the planet radius be-
-20 .7 h .30 e ) fore the focusing effect of the shrinking

. P . shadow overcomes the diminution of the
o7 e light by differential refraction. The lower
2 - . ] panel illustrates the variation in shape by
[ —— = showing the differences of the small planet
RN J light curves from the large planet limit,
o ’ which is plotted in this panel as a horizon-
tal line.
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8. COMPARISON WITH PREVIOUS WORK limb of the shadow, when the atmosphere is a thin shell

around the planet, as is the case for Earth, Mars, Venus, and

The flux equation for a large planet with no extinction has the Jovian planets. Mathematically, their assumptions are
been derived for an isothermal atmosphere (Baum & Code that A, > 1 and that for any r probed by the occultation,
1953) and for an atmosphere with a linear temperature gra- |r — 74| €7,. These models use a reference radius where the
dient (Goldsmith 1963). These models are valid near the observed flux equals 1/2—the “half-light” radius, which we
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FIG. 5. Variation of the light curve due
20 to refraction only for different values of
r thermal gradients. The upper panel
0 PRSP R B P S S S S I shows an isothermal light curve and two
light curves that include a thermal gra-
dient. The lower panel shows the differ-
10 —— ; ——— — e ence between the gradient light curves
— ] and the isothermal light curve.
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TABLE 2. Parameters for benchmark model calculations.
Data Parameter Model
Value

background level, sy, (ADU) 630.000

background slope, sp,' (ADU s~1) 0.000

full-scale level, s; (ADU) 3340.00

immersion half-light time, f;, (s*) 53.900

emersion half-light time, tem (s*) 139.900

refraction scale interval, THjso (S) 4.700

exponent for molecular weight, a 0.000

haze scale interval, T, 1 (s) 4.200

haze onset interval, T, 2 (s) 7.000

haze reference interval, Tr2 (s) 2.300

minimum observer radius, Tmin, (S)T 46.900

shadow velocity, U (km s~1) 18.500

integration time, At (S) 0.200

| ———
b=0 b=-0.6

Atmospheric Parameter 0hOrder 15tOrder 4t Order 0 Order  15tOrder 4% Order
event midtime, tmig (s) 96.9 96.9 96.9 96.9 96.9 96.9
minimum observer radius, pmijn (km)  867.65 867.65 867.65 867.65 867.65 867.65
refractivity at 1250, vo (10-9)* 1.152234 1.111036 1.110238  0.9449682 1.012046 1.010128
energy ratio at 1250, Ago 21.01520 20.95764 2095657  22.47254 22.50265 22.50100
haze onset radius, 1 (km) 1221.175 1219.194 1219.158 1215.851 1217.324 1217.244
x1 (10-8 cm—1) 2351658 2271510 2.267495  2.313502 2.268859 2.264360
haze scale height at onset, Hyj (km) 29.28378 29.29109 29.29122  29.29941 29.29329 29.29360

*calculated for Earth-Planet distance, D = 28.89675 AU

denote by 7,,. We compare our model with these two by set-
ting our reference radius to be the half-light radius and then
comparing our expression for the derivative of the flux at this
radius for the large planet limit (6§-0).

In Goldsmith’s formulation, the scale height is assumed to
be linear about the half-light value, H = H, + G(r —r,),
where in this section only, G is the scale-height gradient, as
defined by Goldsmith (not to be confused with the gravita-
tional constant). In terms of this notation, the flux from his
Eq. (53) is

_ —1—(5/2)G7 — 1
¢(r)=[1+(1+¥) ] REERD

h

The derivative of (8.1) with respect to 7 at half-light is
dé(r) _ 1 +3G

(8.2)
dr 4H,

—J

vt (1/¢—1)[1—1n(1/¢—1)(1/G+§)"+...] -1

For the large planet case, the focusing term is not includ-
ed, and Eq. (2.1) states simply that ¢ = dr/dp. Thus, at half-
light, dp/dr = 2 and the derivative of Goldsmith’s flux with
respect to the observer radius is

dé(r) _ 1+3G
dp 8H,
Our analog to Goldsmith’s G is b5,. We compare Eq.
(8.3) with Eq. (5.10) for @ =0, in the large-planet limit
where terms of order b6, are retained when we take the limit
6, —0. They clearly give the same result. Both formulations
result in the relation, for the large-planet limit,
H, = H, (1 +3G). (8.4)
This result differs from Goldsmith’s Eq. (57), which is

H, =H,[1+ (3/2)G ]. We have traced the discrepancy
to the step between his Egs. (55) and (56). His Eq. (55) is

(8.3)

H,, 143G

In(1/¢—1) . 8.5
+( 143G ) (52

~ We can expand the first term on the right-hand side of Eq. (8.5) around G = Oand ¢ ~ ' = 2, and find to first order in G and

)
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TABLE 3(a). Benchmark model values (b = 0.0).

Time, ¢t Observer  Planet Energy Refractivity k() Optical Depth, Unfocused  Refractive Flux, ¢ Model
Radius,p  Radius,r  Ratio, Ago V() (1009  (um2 cm3)  Tobs Flux, ¢cyl ~ Flux, dref Value, s;
30. 1511487 1512838 1736406  0.02991351 0. 0. 0.9847337  0.9856136 0.9856136 660.2026
1512774  17.31723  0.02915538 0. 0. 0.9850680  0.9859063 0.9859063 660.3612
. 1512772 17.31638  0.02914013 0. 0. 09850732  0.9859106 0.9859106 660.3636
3s. 1436.727  1440.057 18.24164  0.07194477 0. 0. 09595295  0.9617532 0.9617532 647.2703
1439.898  18.19369  0.07004203 0. 0. 0.9604435  0.9625630 0.9625630 647.7091
1439.895  18.19282  0.07000398 0. 0. 0.9604583  0.9625758 0.9625758 647.7161
40. 1364.144 1372513 19.13934  0.1765491 0. 0. 0.8954885  0.9009826 0.9009826 614.3326
1372.129  19.09227  0.1720306 0. 0. 0.8976046  0.9028588 0.9028588 615.3495
1372.122  19.09141  0.1719399 0. 0. 0.8976401  0.9028899 0.9028899 615.3663
45. 1294104  1314.124 1998975  0.4132307 0. 0. 0.7665589  0.7784176 0.7784176 547.9023
1313313 19.94730  0.4045239 0. 0. 0.7696971  0.7811222 0.7811222 549.3682
1313298  19.94653  0.4043444 0. 0. 0.7697511  0.7811682 0.7811682 549.3931
50. 1227.042  1268.713  20.70524  0.8451323 0. 0. 0.5952175  0.6154312 0.6154312 459.5637
1267.368  20.67043  0.8336728 0. 0. 0.5974048  0.6170380 0.6170380 460.4346
1267.344  20.66980  0.8334182 0. 0. 0.5974431  0.6170657 0.6170657 460.4496
55. 1163475 1236221 21.24944  1.456364 0. 0. 0.4443594  0.4721428 0.4721428 381.9014
1234434  21.22191  1.447094 0. 0. 0.4446093  0.4717257 0.4717257 381.6753
1234402 212214 1.446842 0. 0. 0.4446142  0.4717185 0.4717185 381.6714

60. 1104005 1213435 2164846  2.170497 3.068288  0.7726895 0.3387185  0.3722927  0.1719134 219.1771
1211359  21.62616  2.168012 2973184  0.7720796 0.3376477  0.3704808  0.1711811 218.7802
1211322 21.62575 2.167838 2.968097  0.7720750 0.3376299  0.3704497  0.1711675 218.7728

65. 1049.330  1197.171  21.94256  2.912644 5.426357  2.024042 0.2695612  0.3075399  0.04063229  148.0227
- 1194918  21.92373  2.919412 5.291312  2.030196 0.2678707  0.3050359  0.04005419  147.7094
1194877  21.92339  2.919358 5.282850  2.030242 0.2678422  0.3049932  0.04004674  147.7053

70. 1000.236 1185307  22.16219  3.628013 8306413  3.372716 0.2241973  0.2656800  0.009111853  130.9386
1182944  22.14563  3.644743 8.132926  3.391991 0.2222717  0.2628731 0.008843482  130.7932
1182902  22.14533  3.644822 8.120505  3.392130 0.2222394  0.2628253  0.008840642 130.7916

75. 957.5819  1176.570 2232676  4.277044 1142810  4.777469 0.1939656  0.2383234  0.002006034  127.0873
1174138 22.31173  4.303295 11.21966  4.813558 0.1919778  0.2353933  0.001911140  127.0358
1174094 2231145  4.303503 1120305  4.813811 0.1919445  0.2353437  0.001910255 127.0354

80. 9222616 1170204 2244823  4.829423 1446230  6.115231 0.1737221  0.2204258  0.0004869129 126.2639
1167.728  22.43421  4.863993 14.22391  6.169063 0.1717401  0.2174499  0.0004551654 126.2467
1167683 2243395 4.864314 1420329  6.169427 0.1717070  0.2173997  0.0004548946 126.2466

TABLE 3(b). Benchmark model values (b= — 0.6).

Time, ¢ Observer  Planet Eneérgy Refractivity  x(?) Optical Depth, Unfocused  Refractive  Flux, ¢ Model
Radius,p  Radius,»  Ratio, xgo v(,)(10-9) (llmz em-3) Tobs Flux, ¢cyl Flux, ¢ref Value, s;
30. 1511487 1512336  20.82364  0.01717110 0. 0. 0.9884442  0.9889994  0.9889994  662.0377
1512366  20.85138  0.01828148 0. 0. 0.9882659  0.9888403  0.9888403  661.9514
1512364  20.84987  0.01825277 O. 0. 0.9882768  0.9888501  0.9888501 661.9567
35. 1436.727  1439.092 2124128  0.04734840 0. 0. 09662749 09678653  0.9678653  650.5830
1439.177  21.26924  0.05043916 0. 0. 09657168  0.9673633 09673633  650.3109
1439.172  21.26771  0.05035852 0. 0. 0.9657498  0.9673930  0.9673930  650.3270
40. 1364.144 1370731  21.65884 ° 0.1306129 0. 0. 0.9057346  0.9101079  0.9101079  619.2785
1370964  21.68638  0.1390035 0. 0. 0.9042915  0.9088126  0.9088126  618.5764
1370951  21.68488  0.1387894 0. 0. 09043743 0.9088869  0.9088869  618.6167
45, 1204104  1311.183  22.04707 0.3356766  O. 0. 0.7768944  0.7871475  0.7871475 552.6339
1311726  22.07295 0.3558154 0. 0. 0.7745899  0.7851374  0.7851374 551.5445
. 1311695 22.07154 0.3553466 0. 0. 0.7747185  0.7852495  0.7852495 551.6052
50. 1227.042 1264619 22.36826 0.7332186 0. 0. 0.6007304  0.6191269  0.6191269  461.5668
1265575  22.39146  0.7721710 0. 0. 0.5990806 0.6178932  0.6178932  460.8981
1265.522  22.39020 0.7714239 0. 0. 05991708  0.6179605  0.6179605  460.9346
55. 1163475 1231276 22.60862  1.315927 0. 0. 0.4454441 04714020 04714020  381.4999
1232.587  22.62927  1.377289 0. 0. 04452753 04717253 04717253 381.6751
1232516  22.62814  1.376404 0. 0. 0.4452847  0.4717079 04717079  381.6657

60. 1104.005 1207919  22.78248  2.009133 3.038130  0.7711835 0.3378478  0.3696476  0.1709492 218.6545
1209472 22.80128  2.093401 2971512 0.7718181 0.3387003  0.3710567  0.1714920 218.9487
1209.388  22.80025  2.092539 2.966026  0.7717963 0.3386551  0.3709814  0.1714610 218.9318

65. 1049330  1191.258  22.90940  2.736507 5449062  2.040688 0.2681358  0.3044027  0.03955388  147.4382
1192964 2292697 2.842731 5300793  2.034124 0.2694713  0.3063569  0.04006994  147.7179
1192.872 22.92600  2.841993 5292457  2.034348 0.2694006  0.3062530  0.04004739  147.7057

70. 1000.236  1179.104  23.00357 3.441672 8.432035  3.429558 0.2227373  0.2625684  0.008507549  130.6111
1180907  23.02032  3.568110 8.172710  3.408512 0.2242593  0.2647670  0.008761247  130.7486
1180.811  23.01939  3.567539 8.161342  3.409222 0.224179 0.2646505  0.008751173  130.7431

75. 957.5819  1170.148  23.07384  4.083845 11.69941  4.892159 0.1926214  0.2353799  0.001766573  126.9575
1172015  23.09002  4.228142 1131146  4.851927 0.194196 0.2376827  0.001857088  127.0065
1171915  23.08912  4.227748 11.29711  4.853270 0.1941131 02375610  0.001853645  127.0047

80. 9222616 1163.618  23.12554  4.631788 1490201  6.296934 0.1725127 02176593  0.0004009162 126.2173
1165.527  23.14135  4.791045 14.38352  6.235892 0.1740861  0.2200049  0.0004307435 126.2335
1165425  23.14046  4.790814 1436645  6.237911 0.1740033  0.2198811 0.0004296327 126.2329
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TABLE 4. Scale height ratios.

Equivalent Isothermal

Pressure Scale Height, = Scale-Height Gradient Normalized
Hpo (km) (linear model), Scale Height, Scale-Height Ratio,
G =(a+b+2)Hpy/ro Hiso (km)* (Hpo/Hiso — 1)/G
25 0.1 19.8 2.63
25 0.1 33.9 2.63
25 0.3 14.4 2.45

*after Wasserman and Veverka (1973)

(1/¢—D[1-In(1/g—D(1/G+5 '+ -] -1
143G

(- -19)

The second term on the right-hand side of Eq. (8.5) be-
comes (1 —5/2 G) In(¢ ~ ' — 1). Substituting these results
into Eq. (8.5) we have, to first order in Gand ¢ ' — 2:

-1
vt =(1+ii)

(8.6)

+0(G?), (8.7)

so that the correction from Goldsmith’s formulation is 5/2,
not 3/2, and agrees with our formulation. To determine this

correction empirically, one can fit an isothermal occultation
curve for a large planet (Baum & Code 1953) to a synthetic,
nonisothermal curve generated by Goldsmith’s (1963)
equation for the flux. The empirical correction fraction,
found by inverting Eq. (8.4),is (H,/H,, — 1)/G. Wasser-
man & Veverka (1973 ) performed such fits, and their results
agree much better with a 5/2 G correction than witha 3/2 G
correction. As we can see in the last column of Table 4, their
results are close to our derived correction of 2.50.

9. FITS TO A SYNTHETIC LIGHT CURVE

Our next task is to fit the model described in the previous
sections to synthetic data, in order to establish that the fit-
ting is well behaved in the region of parameter values near
those that apply to the KAO data. The synthetic data were
generated by first calculating a model for the parameter val-
ues listed in the second column of Table 5, for midtimes
ranging from 0.1 to 199.9 s (at 0.2 s intervals). Three 1000-

TABLE 5. Fits to synthetic data.

Model Parameter Model Fit #1 Fit #2 Fit #3 Fit #4
Value ms noise 2. rms noise 2. rms noise 20. rms noise 200.
Trin free Tmin fixed Trin fixed sb', b, Tin fixed

background level, sp (ADU) 630.000  630.23£0.72 63040 £ 0.68 6358+ 7.5 557+ 79
background slope, s’ (ADU s—1) 0.000 0.0005 £ 0.0012 0.0005 £ 0.0012 0.015 + 0.011 0.000
full-scale level, s; (ADU) 3340.00 333896 £0.64 3339.08 £0.62 33343163 3363+ 55
immersion half-light time, tj,, (s*) 53.900 53.879£0.019 53.872+0.017 53.87+0.17 526+ 15
emersion half-light time, tep, (s*) 139900 139.911 £ 0.019 139917 £0.017 139.79 + 0.17 141.8 + 1.5
refraction scale interval, Ti;so (S) 4.700 4.68 £ 0.05 4,69 £ 0.02 473+ 0.18 428 £0.89
exponent for molecular weight, a 0.000 0.000 0.000 0.000 0.000
exponent for temperature, b -0.600 045 £ 2.66 -0.63 £ 0.09 -0.86 = 0.89 0.000
haze scale interval, Ty, 1 (s) 4200 4226+0.021 4.232 +0.020 4.38 £ 0.19 54+26
haze onset interval, T, 2 (s) 7.000 7.031+£0.030 7.023 +£0.028 6.76 + 0.28 127+ 33
haze reference interval, Ty (s) 2.300 227 £0.05 2.26 £ 0.04 3.00 £ 0.69 14+ 14
minimum observer radius, Tpin, (5)T 46.900 70.1 + 446 46.900 46.900 46.900
shadow velocity, L (km s-1) 18.500 18.500 18.500 18.500 18.500
integration time, At () 0.200 0.200 0.200 0.200 0.200

Fit Information
degrees of freedom 989 990 990 990
sum of squared residuals 3932.48 3935.21 403983 424743 x 107
rms residual per degree of freedom (ADU) 1.994 1.994 20.201 207.13

" *after 1988 June 9, 10:35:50 UTC

tWhen fixed this number is pmin/v = 865.69 km / 18.475911 km s~1
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point samples of Gaussian noise were then generated with
the “ContinuousDistributions.m” package supplied with
Mathematica™ (Wolfram 1988, version 1.2.2). These sam-
ples had rms variations of 2, 20, and 200, which represented
noise that was approximately 0.1, 1.0 and 10 times that of the
KAO light curve. Adding each of these noise samples to the
model produced the desired synthetic light curves.

A fit to each of these light curves was obtained with stan-
dard least-squares procedures (Clifford 1973) that we im-
plemented in Mathematica™. Our implementation allowed
us to select any subset of the light curve for fitting and to
specify for each model parameter whether it would be fixed
or fit. We found it expedient to use numerical derivatives
since they are easier to implement and the derivative step can
be specified, allowing us to test the stability of a solution by
using different step sizes. One problem with fitting data is the
discontinuous derivative of our model at the top of the haze,
and this can be particularly troublesome if the top of the haze
corresponds to a boundary between integration bins. By
limiting the size of the parameter changes to a fraction of
that called for by the least-squares calculation, however, a fit
could be achieved. None of the fits were weighted. A fit was
considered converged when the parameters changed by no
more than a few percent of their formal errors for several
iterations.

The results of the fits are displayed in Table 5. For the low
noise case (fit No. 1), we were able to fit for 11 free param-
eters. Note, however, that the formal error in the “distance
of closest approach,” (7,,,) is a large fraction of its value.
The two parameters T, and b (power law index for the
temperature) both affect the second-order shape of the light
curve and have a correlation greater than 0.995 for the pa-
rameter set used. Fit No. 2 of Table 5 shows the results of a fit
with T, fixed. Note the substantially lower formal error in
the parameter b in fit No. 2 than in fit No. 1. Fit No. 3 of
Table 5 shows the results of a fit to data of about the same
noise level as the KAO data, and fit No. 4 shows a fit to data
ten times noisier. For the latter fit we fixed more parameters
in order to achieve convergence. Even so, with data this
noisy the formal errors in the model parameters describing
the haze are about equal to the values of the parameters
themselves. '

We draw two conclusions from our fits to synthetic data.
First, we note that 22 of 28 (79%) of the fitted parameter
values for the fits to the three different synthetic datasets
(columns 4-6) agree with the model value of the parameter
within the formal error, which is close to the average of 68%
of the cases to be expected by chance. Secondly, the formal
error for each fitted parameter increases approximately pro-
portionally to the noise level in the data, which demonstrates
that the linear least-squares approximation is valid for these
parameter values and noise levels.

10. FITS TO THE KAO PLUTO LIGHT CURVE

We now proceed to fit our model to the stellar occultation
light curve recorded with the KAO for the 1988 June 9 oc-
cultation of the star P8 (Mink & Klemola 1985; Bosh ez al.
1986) by Pluto. As described by Elliot ez al. (1989), these
data were recorded as open-chip CCD frames, each exposed
for 0.2 s with the SNAPSHOT camera (Dunham et al.
1985). Synthetic aperture photometry was used on the CCD
frames to generate a light curve. Data over a 200 s interval
used in this work were the same as that used by Elliot ef al.
(1989).

As a further test of our model fitting, we compared the
results of our present model with those of Elliot et al.
(1989), who fit the KAO data with the standard, large-plan-
et model for the refractive flux, and then performed a first-
order correction on the results for the small-planet case. To
reproduce the large-planet results with the present model,
we remove the small-planet corrections: (i) the » —2 de-
pendence of gravity by settinga = — 2, (ii) the temperature
gradient by setting b = 0, (iii) the focusing effect by setting
t.mn = 10° s when fitting for #,, and setting £, = — 10° s
when fitting for 7., (iv) the nonnormal limb incidence by
setting 7,;, =0 s. The remaining differences between the
two models are (i) the haze is modeled slightly differently
and (ii) the present model integrates the signal over the in-
terval containing the top of the haze and the adjacent one
that corresponds to the next level deeper into the atmo-
sphere. The results of the fits are compared in Table 6. Ex-
cept for the parameters y ., and y,,, which are defined differ-
ently from the corresponding parameters 7, and T, ,, the
fitted parameters closely agree, as they should.

Next we fit the KAO data with the model-calculation and
least-squares procedures described in the previous section,
and the results are given in Table 7. The parameters were
those of the data parameter set, summarized in Table 1. The
KAO data do not have sufficiently high signal-to-noise ratio
to fit for all these simultaneously. Even with the parameter b
fixed at zero, the error in T, (see fit No. 4 of Table 7) is
greater than our knowledge of this quantity from the astro-
metric solution of Millis ez al. (1992). Hence for all other fits
this quantity was fixed. Similarly, there should be no slope in
the light curve, since the sky and CCD background would
have been removed, on average, by the synthetic aperture
photometry. The “background” in our model would be the
signal from Pluto and Charon. This would have drifted only
if the extinction, instrumental gain, or seeing changed dur-
ing the 200 s interval of the data. Apparently none of these
effects were significant, since the fitted slope is consistent
with zero. Since the background slope (s;) and the mini-
mum observer radius (7, in the signal set) are known to
greater accuracy by other information and their fitted values
are consistent with this information, these were fixed.

A fit with a as the free parameter instead of b (fit No. 3)
gives similar results to that with a fixed and b free (fit No.2).
We consider any significant value of gradient to be most
likely due to a thermal, rather than a molecular weight gradi-
ent, so we chose as our solution the fit to all the data, with b a
free parameter as shown as fit No. 2 in Table 7. Its fitted
value, — 0.61 + 0.87, shows that Pluto’s atmosphere is iso-
thermal in this region within the precision of the model fit.
The correlation coefficients between the fitted parameters
are given in Table 8. Since the matrix of the correlation coef-
ficients is symmetric, we used the upper and lower triangles
of each matrix to display the coefficients of different fits.
Fixed variables are represented with ellipses in these tables.

In order to check whether the atmospheric structure
might be different in the regions probed by immersion and
emersion, we fit these intervals of data separately. The light
curve was divided into two parts at the integration interval
midway between the immersion and emersion times deter-
mined from the fit to all the data. For the immersion fit, the
emersion time was fixed at its value obtained from the fit to
all the data, and the immersion time was fixed for the emer-
sion fit.

Parameter values and their formal errors for the fits to the
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TABLE 6. Fitted signal parameters for the KAO data for the large planet limit.

Immersion, Immersion, Emersion, Emersion,
Model Parameter Elliot et al. Present Work Elliot et al. Present Work
(1989) (1989)

Signal levels (per integration interval, Ar) ‘

Pluto 1276 £ 1.7 127.5 £ 1.7* 1259+ 1.7 125.8 £ 1.7*

star 5419 £ 2.3 5420 £ 2.3* 5427123 5427 £ 2.3%
Isothermal atmosphere

time of half light (th = fim Of fem)? 53.79 £ 0.19 5380019 139.75+020 139.75%0.20

"scale height" (hobs = THiso) 4341401145 4344 +0.115 4.468+0.119 4.469 +0.119
Extinction layer

"scale height" (hy = THr2) 3.049+1.035 3.188+1.066 2.729+0.711 2.8010.714

top (X10, Th,1) -0442 £ 0.031 (4.35£0.24) -0.394 £0.031 (3.94 £0.22)

unit optical depth (x11, Th,2) -0.676 £ 0.037 (7.10£0.35) -0.679 £0.038 (7.36 £ 0.36)
Fit Informationt

degrees of freedom- 493 493 493 493

sum of squared residuals 183676 183735 183294 183288

rms residual per degree of freedom (ADU) 19.305 19.281 19.282

19.302

dseconds atter 1988 June 9, 10:35:50 UTC
berroneously transcribed as 0.148 in Elliot et al. (1989)

immersion data are shown as fit No. 6 and fit No. 7 of Table
7, and the fitted parameters for emersion are shown in the
next two columns. We note that all parameter values are
consistent within their formal errors for the two fits, and the
value of the temperature power law, b, is consistent with zero
for the fits in which it was a free parameter. The mean of the
parameter values for immersion and emersion are approxi-
mately equal to their fitted value for all the data. The correla-
tion coefficients for the immersion and emersion fits are giv-
en in Table 8.

For further analysis we shall adopt the fit to all the data
that used fixed values of the background slope and scaled
minimum observer radius. This is fit No. 2 of Table 7. These
values and errors, along with the correlation coefficients in

Table 8 are all that is needed to use the transformation equa-
tions summarized in Table 1 to calculate the atmospheric
parameter set. In calculating derivatives we use numerical
derivatives with a step size 0.005 times the formal error of
the parameter. The KAO data are plotted as points in Fig. 6,
and our adopted model is plotted as a solid line. The residu-
als from the model fit are also plotted in the lower part of the
figure.

11. INFERENCES ABOUT PLUTO’S ATMOSPHERE

Having obtained the data parameters from fitting the
KAO light curve, we now convert these to atmospheric pa-
rameters for Pluto. We have summarized all this informa-

TABLE 7. Fitted signal parameters for the KAO data.

Model Parameter Fit #1 Fit #2 'Fit #3 Fit #4 Fit #5 Fit #6 Fit #7 Fit #8
All Data All Data All Data All Data I ion I ion E ion Emersion
b free afree 5, Tmin free b free b free

background level, s, (ADU) 6333+68 633.1+68 633.1+68 6328169 6381+97 637.6+97 6283+97 6283+9.7
background slope, sp' (ADU s~1) 0.0 0.0 0.0 -0.004 + 0.011 0.0 0.0 0.0 0.0
full-scale level, sg(ADU) 33463+ 5.3 33442+6.1 33442161 33442162 33487178 33449+88 33444+71 33443+85
immersion half-light time, £, (s*) 5389 +0.15 5394+0.17 53941017 5394%0.17 53.75+020 5382+023 53937729 53.937729
emersion half-light time, fem (5*) 13992 £+ 0.15 139.88 £ 0.17 139.88 +0.17 139.87 +0.17 139.8769 139.8769 139.77 £ 0.21 139.78 £ 0.22
refraction scale interval, Thiso (5) 4612009 471+018 471+019 471:0.07 454%013 470+023 468+013 468 + 027
exponent for molecular weight, a 0.0 0.0 -0.66 + 0.86 0.0 0.0 0.0 0.0 0.0
exponent for temperature, b 0.0 -0.61 + 0.87 0.0 0.0 0.0 -1.02 + 1.16 0.0 -0.01 £+ 1.39
haze scale interval, T, 1 (s) 4.16 £ 0.17 4.11 £ 0.19 3.95+0.33 4.11 £ 0.19 439+ 0.24 430 %027 398 +0.21 3.98 +0.19
haze onset interval, T 2 (s) 710+ 025 7.01+028 686+040 7.02+028 699+034 685+038 7.19+036  7.19 £ 041
haze reference interval, T2 (S) 227+ 041 2341044 235+ 044 2.36 £ 045 239+ 071 2.52+0.76 222 +0.51 222 £0.54
minimum observer radius, Trin, (5)t 46.855064 46.855064 46.855064  61.72+25.10  46.855064 46.855064 46.855064 46.855064

Fit Information
degrees of freedom 992 91 991 990 478 477 508 507
sum of squared residuals 374043 373875 373877 373814 180602 180338 191805 191804
rms residual per degree of freedom (ADU) 19.418 19.424 19.424 19.432 19.438 - 19.444 19.431 19.450

*after 1988 June 9, 10:35:50 UTC
1When fixed this number is ppyin/v = 865.69 km / 18.475911 km s~1
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(a) All Data, Fits #1 and #2 of Table 7

Model S S; tim ten  THiso b Twi T2 Tae
Parameter
Sp 1.00 -0.03 -0.30 030 -0.16 022 -0.02 -0.49
S 0.01 1.00 -0.10 0.10 0.34 0.07 000 0.04
tim -030 -0.28 1.00 -0.81 0.64 -085 -0.66 0.28
tem 0.30 028 -084 1.00 -0.64 0.85 0.66 -0.28
THiso -0.13 -0.29 065 -065 1.00 ... -0.62 -0.56 0.22
b 0.05 0.52 -0.38 038 -083 1.00
Ty, 0.23 0.27 -0.88 0.89 -0.65 0.39 1.00 0.56 -0.10
Ty 0.02 0.25 -0.72 0.73 -0.66 0.46 0.65 1.00 -0.38
Tueo -049 -0.08 034 -034 031 -023 -0.19 -044 1.00
(b) All Data, Fits #3 and #4 of Table 7
Model Sp S’ e tm tem THiso a Ty, Th_z Tyn Tin
Parameter
Sp 1.00 .. 0.01 -0.30 030 -0.13 0.05 0.16 0.04 -049
Sp 002 1.00 ...
5 002 -008 1.00 -0.28 028 -030 0.52 0.47 040 -0.09
tim -0.30 0.12 -031 1.00 -0.85 064 -038 -0.75 -0.69 0.34
tem 0.31 0.06 029 -084 1.00 -0.64 0.38 0.75 0.69 -0.34
THiso -0.16 0.03 -0.29 0.67 -067 1.00 -085 -091 -0.86 0.32
a 1.00 0.84 0.77 -0.23
Ty, 024 -0.03 0.28 -0.88 0.88 -0.67 . 1.00 0.86 -0.26
Ty 0.02 -0.03 024 -0.73 0.73 -0.65 065 1.00 -0.42
Ty -0.50 0.01 -0.10 035 -035 -020 -020 -044 1.00 ..
Tnin -0.08 0.06 -0.53 041 -040 -042 -042 -0.43 025 1.00
(c) Immersion Data, Fits #5 and #6 of Table 7
Model b 5 tm  Thio b Thvi Thy Tue
Parameter
Sp 1.00 -0.03 -031 -0.16 020 0.01 -0.50
S 0.00 1.00 -0.11 0.35 0.07 0.01 0.04
tim -031 029 1.00 0.65 -0.88 -0.69 0.27
Thiso -0.14 026 068 1.00 ... -0.60 -0.54 0.19
b 005 051 -038 -081 1.00 ... -
Ty, 0.21 026 -091 -0.66 039 1.00 053 -0.04
Th2 0.05 024 -0.76 -0.65 0.44 0.64 1.00 -0.40
Tun -0.51 -0.07 0.32 027 -020 -0.13 -045 1.00
(d) Emersion Data, Fits #7 and #8 of Table 7
Model Sb Sf lem THi:o b T},.l Th_z THn
Parameter
Sp 1.00 -0.03 033 -0.17 029 004 -0.49
S 001 1.00 0.09 034 0.08 -0.01 0.05
tem 0.34 0.29 1.00 -0.67 0.97 0.70 -0.36
Thiso -0.14 -034 065 1.00 v -0.66 -0.57 0.29
b 0.07 0.54 040 087 1.00
Ty, 0.32 0.29 099 -0.65 041 1.00 0.66 -0.30
Ty 0.01 0.25 0.76 -0.66 0.47 0.75 1.00 -0.38
Tye 049 -0.13 -049 042 -031 045 -049 1.00
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Signal Level, ADU sec*-1

o

Seconds after 10:35:50 UTC

F1G. 6. Stellar-occultation data and model. The stellar-occultation
light curve observed with the KAO (Elliot e al. 1989) has been plot-
ted as points and the best-fitting model as a line. The residuals from the
model fit are the points in the lower part of the the figure. The few
points with the largest residuals occur where the light curve has the
largest slope, and they represent unmodeled density variations in Plu-
to’s atmosphere.

tion about Pluto’s atmosphere in Table 9, in which the pa-
rameters have been divided into five groups: (i) “physical,”
which includes Pluto’s mass and physical properties of gas-
es; (ii) “specific to the KAO light curve,” which includes
the signal levels of the KAO light curve and geometry of the
occultation; (iii) “clear atmosphere,” which includes pa-
rameters that apply to Pluto’s atmosphere corresponding to
levels above the break in the light curve; (iv) “haze, no steep
thermal gradient,” which includes parameters that apply to
the haze model for Pluto’s atmosphere (Elliot et al. 1989 and
this work); (v) “steep thermal gradient, no haze,” which
includes parameters that apply to Pluto’s atmosphere if the
thermal gradient model for the lower atmosphere is correct
(Eshleman 1989; Hubbard et al. 1990).

In addition to the uncertainty between the haze and ther-
mal gradient models for Pluto’s lower atmosphere, another
major uncertainty is the composition of the atmosphere. Ac-
cordingly, the second column of Table 9 gives values of
quantities that are independent of an assumed atmospheric
composition, and each of the following four columns gives
parameters for an assumed composition. The first of these is
100% CH,, which could be the limiting case if radiative
cooling of the atmosphere is not the 7.8 ym band of CH,,, but
through a band of longer wavelength—such as the 13.7 um
band of C, H,, which dominates the radiative cooling in Ti-
tan’s atmosphere (Lellouch ez al. 1990). The next three co-
Iumns give limiting cases that would apply if the atmosphere
were in radiative equilibrium dominated by the 7.8 xm band
of CH, (Yelle & Lunine 1989; Hubbard et al. 1990). These
are cases that would give a mean molecular weight near 28:
100% N,, 100% CO, and 50% CH,-50% Ar.

Now we describe the entries in Table 9 in more detail,
working our way down from the top. Determination of the
Pluto—-Charon mass ratio by measuring the “wobble” of the
system center of light is in progress, but the result is not yet
available (Wasserman et al. 1988). Beletic et al. (1989) de-
termined the mass of the Pluto—Charon system to be
(1.35 4+ 0.07) X 10° .#, ~' by measuring the semimajor
axis of the Pluto~Charon orbit and combining this with the
well-determined orbital period (Tholen & Buie 1990). Us-

ing this value for the system mass, one could infer a mass for
Pluto alone by calculating the relative volumes of Pluto and
Charon from the mutual event radii (Tholen & Buie 1990)
and adding some additional uncertainty corresponding to
the unknown relative densities for the two bodies. However,
we cannot accept the radius of Pluto and its error deter-
mined from the mutual events as the surface radius, since
this radius refers to the visible disk of Pluto, which may or
may not be the surface. Furthermore, the mutual-event radi-
us for Pluto’s visible disk is at odds with with the visible-disk
radius determined by combining stellar occultation chords
from the 1988 June 9 event (Millis ef al. 1992).

We see two likely sources for the radius inconsistency,
both connected with the mutual-event radius: (i) unmo-
deled limb darkening of Pluto that would cause the mutual
event radius to be underestimated, and (ii) an unidentified
systematic error (or underestimate of the error) in the semi-
major axis of the system, which would propagate propor-
tionally into the radius. Hence, for our present purpose, we
use Beletic ez al.’s (1989) system mass, but we increase its
error from 0.075 X 10°.# o, ~ 10 0.226 X 10° .# , ~ ', a val-
ue set by requiring that the 1o error on the mutual event
radius for Pluto should include the stellar occultation radius
for the visible disk of Pluto. This corresponds to a semima-
jor-axis error of + 1100 km (cf. 19 640 + 320 km from Be-
letic et al.). Next, we derive an expression for Pluto’s mass,
in terms of the Pluto-Charon semimajor axis, and Charon’s
mass, calculated under the assumption that its density is
2.0 4+ 1.0 g cm ~? and its radius is 593 + 13 km (Tholen &
Buie 1990), with additional uncertainty from semimajor-
axis error. The resulting Pluto mass is .7,

= (1.30 + 0.24) X 10* g, as has been entered in Table 9.

The refractivities of CH,, N,, CO, and Ar at standard
temperature and pressure (vgrp) Were calculated by inte-
grating the refractivity of each gas over the quantum effi-
ciency function for our CCD chip (Dunham et al. 1985) and
the photon emission function for a black body at 4900 K,
which would have the same BVR colors as the occulted star,
P8 (Bosh et al. 1986).

In the next group of parameters, “specific to the KAO
light curve,” we find the background level, star level, and
midtime through conversion of the fitted data parameter set
given in the second column of Table 7 to the atmospheric
parameter set. The resulting correlation coefficients for the
new parameters are given in Table 10. In this conversion we
have chosen a fixed reference radius of 1250 km, the same as
that used by Millis et al. (1992). Recall that the reference
radius has no error bar, since this is a fixed parameter that is
selected for convenience. All parameters in Table 9 belong-
ing to the atmospheric set have been flagged with an asterisk
(*). Some of these are used to derive other parameters de-
scribing the atmosphere, since correlation coefficients are
available for this set (Table 10) that allow the calculation of
formal errors for any derived parameter.

Quantities pertinent to the occultation geometry, D and v
and p,;,, have been provided by Millis et al. (1992). As
errors in D and v are difficult to estimate, yet certainly far
too small to significantly affect the error on quantities de-
rived from them, we have not attempted to enter their errors
in Table 9. As we have seen in our fitting experiments, p_;. is
poorly determined by the shape of the light curve, so we use
the value of 865.69 km, determined by a joint fit to all Pluto
occultation data for this event (Millis ez al. 1992). The error
on this value is composed of two parts: (i) the error in deter-
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TABLE 9. The structure of Pluto’s atmosphere.

Values That Are Assumption for Composition
Parameters Independent of Composition  100% CHgy 100% N»o 100% CO 50% CHa
50% Ar
Physical
Pluto mass, Mp (g) (1.30 £ 0.24) x 1025
molecular weight, po (amu) 16.04 28.01 28.01 28.00
refractivity, vstp (10-4)t 4.401 2.980 3.364 3.614
Specific To the KAO Light Curve
background level, s, (ADU s—1) 633.1 £ 6.8*
background slope, sp' (ADU s-2) 0.0
star level, sx (ADU s~1) 2711.2 £ 9.1*
midtime, fmiq (s) 96.907 £ 0.046*
planet-observer distance, D (km) 4.323 x 109§
minimum observer radius, pmin (km) 865.69 * 15.008
shadow velocity, v (km s~1) 18.4759§
Clear Atmosphere
reference radius, ro (km) 1250
refractivity, vo (10-9) 0.97 £0.17*
energy ratio, Ago 22.4 +1.8%
power index for temperature, b —-0.61 + 0.87*
gravity, go (cm sec2) 56+ 10
pressure scale height, Hp (km) 55.7t 4.5
temperature, Tg (K) (3.72 £ 0.75) o 60+ 12 104 £ 21 104 £ 21 104 £ 21
“temperature gradient, (dT/dr)y (K km-1) (-49£7.0)x 10-4T¢  -0.029£0.040 -0.051+0.070 -0.051+0.070 —0.051%0.070
number density, ng (1014 cm—3) (2.61 £0.46) x 10~4/vsTp  0.59 + 0.11 0.88 £0.16 0.78 £0.14 0.72+£0.13
pressure, po (\bar) (1.38 £0.38) x 10-5 ug/vstp  0.49 +0.14 1.26 £ 0.35 1.12 £0.31 1.04 £ 0.29
column height, &y (cm-A) 134+28 19.8 £ 4.1 17.5+£37 163+ 34
number density, 71 (1014 cm=3) 1.102 £ 0.041 1.627 £ 0.060 1.442 £0.053 1.342 + 0.050
pressure, pj (ubar) 0.92 £0.19 2.38 £ 0.49 210 £ 0.44 1.96 £ 0.41
column height, &; (cm-A) 239123 353134 31.3+£3.0 29.1+£28
Haze, No Steep Thermal Gradient
top of haze, r1 (km) 1215+ 11*
haze scale height, Hyj (km) 29.8 + 5.6
linear absorption coefficient, k7, (cm—1) (2.22 £ 0.18) x 10-8*
surface radius (km) <1181
vertical thickness of haze (km) >34
vertical optical depth, Ty 2 0.145
surface number density, ng (1014 cm=3) >2.1 231 >27 225
surface pressure, ps (iLbar) > 1.8 245 2 4.1 2 3.8
surface column height, & (cm-A) 243 2 64 2 57 253
surface temperature, T (K) 34-589 >48.8 >35.7 >39.5 >49.0
bulk density (g cm3) > 1.88
Steep Thermal Gradient, No Haze
surface radius, rg (km) 1206 £ 11
surface number density, ng (1014 cm—3) 1.70 £ 0.38 6.77 £ 1.69 5.31 £ 1.30 3.86 £ 0.91
surface pressure, ps (bar) 1.12 £ 0.26 325+0.84 2.83£0.71 2.54 £0.62
surface column height, &g (cm-A) 28.5+3.3 4711179 41.0 £ 6.5 37.0+53
surface temperature, T (K) 34-58¢ 48.04+£0.45 35251037 39.02+0.38 48.29 +0.48
bulk density (g cm3) 1.77 £ 0.33

T e. g multiply entry by 10~*

* one of the 9 “atmospheric” parameters obtained from conversion of the “data” parameters

§ after Mills ez al. (1992)
{ range of published values; see text.

mining the center of the shadow, and (ii) the error in the
KAO position. The error in the KAO position is about 15
km (unnecessarily large, due to inadequate navigational
equipment). Since the error in the shadow center is much
less than this (Millis ez al. 1992), we adopt an error of 15 km
for p,..n,» which has been entered in Table 9.

Some of the parameters that describe the “clear atmo-
sphere”—refractivity, energy ratio, and power index for the
temperature—are obtained directly from the conversion
from the data parameters. For the KAO light curve, the

model is most sensitive to a thermal gradient at a radius of
1427 km from the center of Pluto, within a range of 153 km
(FWHM). The other parameters in this group were calcu-
lated from parameters higher in Table 9 with Eqgs. (6.11)—
(6.21). Errors for these parameters were calculated by prop-
agating errors from more fundamental parameters, account-
ing for correlations of these parameters (Table 10). Since
the temperature-to-molecular-weight ratio is relatively well
determined, the temperature of this region of the atmo-
sphere could be as low as 60 + 12 K in the limit of a pure
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TABLE 10. Correlation coefficients for atmospheric parameters.

Model Sb Sy tmid Vo Ago b r K Hu
Parameter
S 1.00 -0.80 0.00 0.01 0.10 0.02 -0.13 -049
S* -0.74 1.00 0.00 0.08 -0.19 0.02 0.13 0.41
tni 0.00 0.00 1.00 0.00 0.00 0.00 0.01 0.00
Vo 0.03 0.17 0.00 1.00 0.65 0.98 0.03 -0.03
lgo -0.01 -0.36 0.00 -0.15 1.00 0.77 -0.06 -0.18
b 0.05 0.31 0.00 035 094 1.00
r 0.03 0.05 0.00 0.95 0.14 0.10 1.00 0.00 -0.07
K -0.13 0.07 0.01 -0.02 0.13 -0.16 -0.02 1.00 0.79
Hu -0.49 0.31 0.00 -0.11 0.15 -0.23 -0.09 079 1.00

1012

methane atmosphere. This magnitude and error of this result
differs from that of our previous analysis (Elliot ez al. 1989,
67 4 6 K for a pure methane atmosphere). The difference in
the value arises from approximations made in the earlier
work. The dominant source of error in the temperature
comes from the mass error. Hence the present error in the
atmospheric temperature is larger in this work because we
used what we feel is a more realistic error for Pluto’s mass,
which is twice that of our previous work.

The next set of parameters, ‘“haze, no steep thermal gradi-
ent,” are valid if the haze model described in this paper cor-
rectly describes the lower part of Pluto’s atmosphere. The
first three of these parameters—top of the haze, haze scale
height, and linear absorption coefficient—are obtained di-
rectly from the conversion of parameters from the data pa-
rameter set. For this model the surface radius is not
known—only that it must lie below a level corresponding to
that where we can still detect light from the occultation
curve. From the limit that the surface radius must be less
than 1181 km, we derive a lower limit on the vertical optical
depth of the haze of 0.145, a value not great enough to ob-
scure the observed repeatable variations in the Pluto—Char-
on rotational light curve. Also from the limit on the surface
radius, we derive limits on the surface. number density and
pressure for our assumptions for the atmospheric composi-
tion. We can also derive lower limits on the surface tempera-
ture if we assume that the atmosphere is in vapor-ice equilib-
rium (Brown & Ziegler 1980). For the CH, -Ar mixture, we
assumed that the CH, was in vapor-ice equilibrium, and that
the Ar fraction is limited by an equilibrium between unspeci-
fied resupply and escape processes. These lower limits on
surface temperatures can be compared with the range of sur-
face temperatures for Pluto between 31 and 59 K that have
been derived from IRAS and mm observations of Pluto—
Charon, analyzed under various assumptions about the ther-
mal properties of the surfaces of Pluto and Charon (Sykes et
al. 1987; Aumann & Walker 1987; Tedesco et al. 1987; Al-
tenhoff et al. 1988).

If the haze model is not correct and a steep thermali gradi-
ent is causing the observed break in the KAO occultation
curve (Eshleman 1989; Hubbard et al. 1990), then the pa-
rameters listed in “steep thermal gradient, no haze” apply to
Pluto. To derive these parameters we have assumed that the
surface radius lies 9 + 3 km below the level corresponding to
the break in the light curve, a value found from the theoreti-
cal thermal profiles for a clear Plutonian atmosphere (Hub-
bard et al. 1990). This gives us a surface radius of 1206 + 11

km. We found thermal and pressure profiles for this layer by
matching the temperature and pressure at #, and assuming
the gas is in vapor-ice equilibrium at the surface. For the
CH, -Ar mixture, we assume the CH, fraction is in vapor-ice
equilibrium, as we did for the haze model.

In Fig. 7 we have summarized the main features of Pluto’s
atmosphere (as given in Table 9) and the relation of the
atmosphere to the surface, where the radius is plotted as the
ordinate and temperature along the abscissa. The left panel
illustrates the structure for the thermal-gradient model and
the right panel shows the structure for the haze model. For
each of these cases we have the further uncertainty of the
atmospheric composition. We know that the upper part of
the atmosphere contains some methane, but the range of
possible methane fractions is large. The temperature could
be greater than 100 K, if the model of Yelle & Lunine (1989)
is correct and the main cooling process is radiation through
the 7.8 um band of CH,. However, if the primary cooling is
through other bands at longer wavelengths, then the tem-
perature would be less. Some type of thermostatic action is
likely at work in this region, since our results indicate that
the atmosphere is isothermal here.

Below this clear region of the atmosphere, whose bound-
ary is delineated by the break in the occultation light curve,
we do not know the atmospheric structure. This region may
be the onset of a sharp thermal gradient, in which case the
surface of Pluto would lie only a few kilometers below. This
boundary could also mark the onset of a haze layer, as we
have modeled here. We infer that the haze cannot be optical-
ly thick, since Pluto’s light curve could not have such a large
amplitude and be in phase with the orbital period of Charon
(which is most likely tidally locked to the rotation of Pluto).
However, if the effects of haze are dominating the light-
curve structure, we have no lower bound on Pluto’s surface
radius, since we do not know whether the haze is layered or
uniformly mixed with the atmosphere. We might set a limit
on the surface radius by arguing that Pluto’s density would
likely not exceed a certain value—say 3.0 g cm ~°. Although
this approach can be used to set a limit on the surface radius,
it is of marginal value, since the point of finding the surface
radius is to learn the density of Pluto.

12. CONCLUSIONS

The presence of a thermal gradient in the atmosphere of
an occulting planet can significantly affect the shape of a
stellar-occultation light curve. Furthermore, the value of the
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FIG. 7. Possible atmospheric structures of

Pluto. Temperature profiles in this figure
illustrate the two main uncertainties we
presently have about Pluto’s atmosphere:
(i) its composition, and (ii) the existence
of a haze layer. Each of the two panels cor-
responds to a different explanation for the
drop in light curve: (a) a steep thermal
gradient just above the surface, and (b) a
haze layer. Solid lines indicate the tem-
perature in a near-isothermal region. The
haze model assumes a near-isothermal at-
mosphere until 1181 km, where the star is
last detectable in the light curve (the sur-
face can be anywhere below this). Dashed
lines indicate possible thermal profiles be-
tween the upper region and the surface.
Values of the surface temperature inferred
from JRAS and mm observations are indi-
cated by the lower positions of the dashed
lines. In the steep thermal gradient case,
inversions of the light curve predict a sur-
face ~9 km lower than the onset of the
gradient (Eshleman 1989; Hubbard ez al.
1990). The haze can continue down to the
surface or be a detached layer, so limits on
the vertical optical depth do not constrain
the surface radius. Therefore the two mod-
els predict different surface radii and cor-
responding bulk densities for Pluto. For
convenience, the bulk density for Pluto
corresponding to a surface radius on the
| outer scales can be read from the scale be-
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gradient can be found by fitting a model light curve to data of
good signal-to-noise ratio. Using our method to analyze the
KAO Pluto occultation data, we find that the upper part of
Pluto’s atmosphere probed by the stellar occultation is iso-
thermal: dT /dr = — 0.029 4 0.040 K km ~ ! for the limit-
ing case of pure CH, and — 0.051 + 0.070 K km ~ ' for the
limiting case of pure N,. This result is consistent with the
isothermal prediction of Yelle & Lunine’s (1989) methane-
thermostat model. However, Pluto’s atmosphere could be
isothermal in this region at a temperature less than the 106 K
calculated by their model, if the thermostatic action is con-
trolled by a molecular band that has a wavelength longer
than the 7.8 um band of CH,. Hence we still cannot con-
strain the CH, fraction in the atmosphere, and we cannot
determine from present observations the identity and
amounts of other gases.

Another unknown in the region of Pluto’s atmosphere
probed by the occultation data is whether a haze or thermal
gradient dominates the structure of the lower part of Pluto’s
atmosphere. If the thermal-gradient model is correct, then
Pluto’s surface radius is 1206 + 11 km, and its bulk density
is 1.77 4+ 0.33 g cm ~*. On the other hand, if the haze model
is correct, we can say only that Pluto’s surface radius is less
than 1181 km and its bulk density is greater than 1.88
gem 3

tween the two panels.

100

Further progress toward a first-order model of Pluto’s at-
mosphere requires answers to these two questions: (i) exact-
ly what gases are present, and in what proportions?, and (ii)
does the sharp break in the slope of the KA O stellar occulta-
tion curve delineate the top of an extinction layer or the onset
of alarge thermal gradient, ~ 10K km ~'? The answer to the
second question is also a prerequisite to pinning down the
density of Pluto to the accuracy we would like for compari-
son with formation models for Pluto and Charon.

A direct observational test of the haze versus thermal gra-
dient question would be the observation of a future stellar
occultation simultaneously at infrared and visible wave-
lengths: micron-size haze particles would have significantly
lower optical depth in the near infrared than at visible wave-
lengths. An opportunity for carrying out such an observa-
tion occurs on 1992 May 21 (UT), when Pluto will likely
occult a star with R = 13.0, visible from the western hemi-
sphere (Mink et al. 1991; Dunham et al. 1991).

We are grateful to L. H. Wasserman for comparing his
model calculations and least-squares-fit results with ours,
and to R. L. Millis ez al. for supplying the value of the KAO
minimum observer radius and shadow velocity in advance of
publication. This work was supported, in part, by NASA
Grant No. NAGW-1494 and NSF Grant No. AST-
8906011.
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APPENDIX: POWER SERIES

In this appendix we present the power series for use with
the equations for the refraction angle, 6() [Eq. (4.6) ], the
derivative of the refraction angle, d6 /dr [Eq. (4.9) ], and the
optical depth along the path of the light ray, 7, (r) [Eq.
(4.19)].

The series required by the refraction angle—denoted by
A (8,a,b)—is a function of the parameter § [Eq. (4.2)], the
exponent for molecular weight variation, @ [Eq. (3.1)] and
the exponent for temperature variation, b [Eq. (3.3)]. As
discussed in Sec. 4, 6 - 0in the large planet limit, and if there
are no temperature or molecular weight gradients in ihe at-
mosphere, thena = b =0.

We obtained the series 4(8,a,b) by performing the inte-
gralin Eq. (4.5). The integrand is expanded to 4th order in

1

8, after which it contains a polynomial in p, the variable of
integration, and &, the expansion parameter of our series. By
expanding the integrand in § rather than y, we guarantee
that the series is complete in y for a given order of §. Each
term of & has as a coefficient a power series in @ and b. We
evaluate the resulting integrals, term by term. The definite
integrals that arise in this expansion are of the following
form (Dwight 1961, by manipulation of Sec. 860.17):

n+1)=(n—1)!ﬁ

* 2 F( , K even
n,— )y = n .

fwye dx . 2 2" (n/2)! odd
’ (A1)

The resulting series, calculated with Mathematica™ (Wol-
fram 1988), is

2 2
A(é,a,b)=1+(_3;"+i;_)5+<_15+26a+7a LT4Sa, b )52

128

27 + 50a + 354*

64 128

b 89+55a,, 9

2 3
+(_ 105 + 4250 + 3550 4 75a°

1024

b2+ b 3)83

1024 1024 1024

b

" ( _ 4725 + 35196a + 57134a* + 318364’ 4+ 5509a* 1059 + 4907a + 38574° + 6094’

32768
2353 + 4326a + 22334% b2

8192

3764 4+ 3164a ,, = 491

16384 8192

b’ + b4)54+~-- (A2)

32768

The series for the derivative of the refraction angle, B(6,a,b), is found from Eq. (4.6) by taking the derivative of 8(7):

d 4, (r) L1

dv(r)

(A3)

d(j;r) = — 2 A, (D v(r) [( !
r

VA (ry  ar v(r)

dr

)A((S,a,,,) N M} _
dr

We evaluate the derivatives, and factor A, (7) /r out of the brackets. Recall thatdA, (r)/dr = — A,(r) (1 4 a + b)/r [from
Eq. (3.9)], (1/v)dv/dr= — 1/H, = — (A, + b)/r,and d5/dr = 5(1 + a + b)/r. With these substitutions, the derivative

becomes

dz(r) =W‘V(r) [((1+a+b)6 +1+b6)A(6,a,b)—- l+;+b 5 dA(b,a,b)
r ¥

2

. A4
dé ] v( )

By comparison with Eq. (4.9), we see that B(8,a,b), the series needed for d@ /dr, can be expressed in terms of the series for

a(r):

B(8,a,b) = (1 + —1+—"2ﬂ 5)A(5,a,b) —

Substituting 4 (8,a,b) into the previous expression, we find

14a+b 5 dA(68,a,b)
5 .

AS
75 (AS5)

14+3a , 15 9+6a+a*> 17+ 1la
B(s,ab) =1 ( —b)6 ( _ b+
(6,a,b) + n + 3 + < 128

128

25b2 ) 62

+ (75 +67a +41a’ + 92 81 + 134a + 5702b

1024 1024

3
1+ 3a b2y 5b )63
1024 1024

b

i (3675 + 7204a + 5266a” + 2564a° + 491a* 339 + 1347a + 12974> + 4094’

32768

_ 10555 + 1834a + 807a* ,, _ 67+49a

8192
59

16384 8192

b4)5“ A6
32768 + (A8)

For the series required by the line-of-sight optical depth, we follow the procedure outlined in Sec. 4. The expansion

parameter is 5, =H, r/r?, and the resulting power series is

345
52
128 7 + 1024

9555 o , 1371195

9
Cs,)=1+=6
() +8 -+ 32768

6r+ 5:+.

(A7)
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