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Abstract

The discovery of two thin rings around the ∼ 250 km sized Centaur Chariklo was the first of its kind, and their
formation and evolutionary mechanisms are not well understood. Here, we explore a single shepherd satellite as a
mechanism to confine Chariklo’s rings. We also investigate the impact of such a perturber on reaccretion, which is
a likely process for material located outside the Roche limit. We have modified N-body code that was developed
for Saturn’s rings to model the Chariklo system. Exploration of a reasonable parameter space indicates that rings
like those observed could be stable as the result of a single satellite with a mass of a few ×1013 kg that is in orbital
resonance with the rings. There is a roughly linear relationship between the model optical depth and the mass of the
satellite required to confine a ring. Ring particles do not accrete into moonlets during hard-sphere simulations.
However, a reasonable fraction of the ring material forms into moonlets after a few tens of orbits for soft-sphere
collisions. The ring-particle properties are thus key parameters in terms of moonlet accretion or destruction in this
system.

Unified Astronomy Thesaurus concepts: Small Solar System bodies (1469); Centaur group (215); Planetary rings
(1254); Shepherd satellites (1451); Ring resonance (2295); Astronomy data modeling (1859); N-body
simulations (1083)

1. Introduction

In 2013, a multi-chord stellar occultation by (10199) Chariklo
revealed a system of two thin rings, referred to as C1R and C2R
(Braga-Ribas et al. 2014). Chariklo is the largest known Centaur.
It orbits from ∼13 to 18.5 au, with an eccentricity of 0.17,
inclination of 23°, and spin rate of 7.004± 0.036 hr (Fornasier
et al. 2014). From infrared data, Chariklo’s diameter was
estimated to be 248± 18 km (Fornasier et al. 2013). The newly
discovered rings were located approximately 391 and 405 km
from the center of the nucleus, with widths of roughly 7 and 3 km
and normal optical depths of 0.31–0.46 and 0.04–0.12,
respectively (Braga-Ribas et al. 2014).

Analyses of additional stellar occultations by Chariklo from
2014 to 2020 (i) confirmed the circular ring solution and pole
position from 2013 to within the error bars, (ii) determined that
C1R blocks roughly ten times more light than C2R (with
equivalent widths of roughly 2 km and 0.02 km, respectively),
(iii) estimated the eccentricity of C1R to be 0.005–0.022, (iv)
found that C1R and C2R vary azimuthally in width by up to 4.3
and 1 km, respectively, (v) revealed a W-shaped structure in
C1R, and (vi) noted that the rings are located close to the 3:1
resonance between Charikloʼs rotation and the ring orbit, which
is at 408± 20 km (Bérard et al. 2015; Leiva et al. 2017;
Morgado et al. 2021). The most recent analysis found Chariklo
to be a triaxial ellipsoid with semi-axes of -

+143.8 1.5
1.4, -

+135.2 2.8
1.4,

and -
+99.1 2.7

5.4 km, and the rings were measured at radii of
385.9± 4 km and 399.8± 0.6 km with a radial distance
between them of -

+13.9 3.4
5.2 km (Morgado et al. 2021).

This system is surprising, as its scale is vastly different from
that of the rings observed around the giant planets. The relative
sizes result in different ring properties: a few example differences

and similarities are listed in Table 1. Notably, under reasonable
assumptions, Chariklo’s rings are located near or outside the
classical Roche limit (e.g., Melita et al. 2017). The classical
definition of the Roche limit would predict that material that is
outside this location should either form into a satellite (or be
dissipated, if dusty) over relatively short timescales, unless there
is a disruption or replenishment mechanism (e.g., Murray &
Dermott 1999).
Proposed formation mechanisms for Chariklo’s rings include

accretion of remnants from a disrupted satellite or collisional
debris disk (Melita et al. 2017), tidal disruption of a
differentiated object during a close encounter with a giant
planet (Hyodo et al. 2016), and being generated through
volatile outgassing (Pan & Wu 2016). The latter mechanism
predicts that rings should be common among 100 km class
Centaurs. However, the chaotic, perturbed nature of Centaur
orbits suggests that small-body ring lifetimes might be
relatively short. Centaurs are thought to evolve inward from
the outer Solar System, and their unstable orbits typically cross
those of the giant planets. The dynamical lifetimes of Centaurs
are only a few million years, mostly being ejected from the
Solar System/entering the Oort cloud or transitioning into
Jupiter-family comets (e.g., Tiscareno & Malhotra 2003).
Nonetheless, Araujo et al. (2016) showed that 90% of modeled
Centaur systems were unaffected by close planetary encoun-
ters, and Safrit et al. (2021) found that close encounters
between Centaurs and planets are exceedingly rare, suggesting
that rings could form around Trans-Neptunian Objects (TNOs)
before they transition into Centaurs and that such ring systems
might be old and common. In fact, ring systems have also been
detected around TNO (136108) Haumea (Ortiz et al. 2017) and
possibly around the Centaur (2060) Chiron (Ortiz et al. 2015;
Sickafoose et al. 2020; Braga-Ribas et al. 2023; Ortiz et al.
2023; Sickafoose et al. 2023), with distant, inhomogeneous
surrounding material recently reported at TNO (50000) Quaoar
(Morgado et al. 2023; Pereira et al. 2023).
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The ring locations and thin widths are keys to understanding
the Chariklo system. Over relatively short timescales, <1Myr,
Chariklo’s rings should naturally disperse (Braga-Ribas et al.
2014). Goldreich & Tremaine (1979) proposed that narrow,
eccentric rings like those at Uranus have apse alignment due to
self-gravity. Pan & Wu (2016) built on that idea for Chariklo,
developing a simple model that combined the ellipticity of the
nucleus and the particles’ self-gravity to maintain apse
alignment. They determined a mass for the inner ring (a few
times 1016 g) and a spreading time of ∼105 yr. Such
confinement mechanisms often require a high surface density
of ring particles that may not apply to the Chariklo system.
Sicardy et al. (2019) explored the effect on small-body rings of
non-axisymmetric nuclei (having elongations or topographical
features) and concluded that fast rotators are favored to host
rings. Melita & Papaloizou (2020) used a theoretical model
assuming a close-by satellite, as observed for the ò-ring of
Uranus, to find a diverse range of plausible solutions for
Charikloʼs ring eccentricity gradient and surface density.
Giuliatti Winter et al. (2023) used numerical simulations and
the Poincaré surface of section technique to identify a stable
region near C1R, noted that C2R is located in an unstable
region, and concluded that a three-satellite system would best
confine the observed rings.

Here, complementary to previous studies, we use N-body
simulations to explore a single satellite as a mechanism for
radial confinement of Chariklo’s rings. This mechanism is
feasible, as it is known to confine large-scale rings (e.g.,
Showalter et al. 1986; Goldreich & Porco 1987). While early
models of narrow rings invoked two shepherding satellites that
provided balanced confining forces (e.g., Goldreich &
Tremaine 1979; Dermott 1984), we now know that a single
perturbing satellite can maintain a narrow ring (Goldreich et al.
1995; Hänninen & Salo 1995; Lewis et al. 2011; Cuzzi et al.
2014). A handful of N-body simulations have previously been
developed to study small-body ring systems (e.g., Michikoshi
& Kokubo 2017; Rimlinger et al. 2019; Sumida et al. 2020).
The uniqueness of our model is that it includes a perturber and
has fine dynamical resolution as a result of the large number of

particles modeled within a small area. The analyses are
described in Section 2. The results for a suite of simulations
are presented in Section 3. Section 4 contains a discussion, and
conclusions are provided in Section 5.

2. Analyses

2.1. Roche Limit at Chariklo

For the simple case of spherical central bodies and ring
particles, the classical Roche limit is given by
aRoche= R(2δ)1/3, where R is the radius of the primary and δ
is the density ratio of the primary to the ring particles.
Assuming a spherical equivalent radius for Chariklo of 129 km
(Leiva et al. 2017) and δ= 1, the Roche limit at Chariklo is
<100 km. In order for Chariklo’s rings to reside within the
Roche limit (aRoche� 400 km), the density of the ring particles
would have to be �0.2 the density of the nucleus. In
comparison, the density of Saturnʼs ring particles is typically
�0.5 the density of the planet, and these are likely the least
dense ring particles of the giant-planet systems (e.g., Tiscareno
et al. 2013).
A more detailed definition of the Roche radius is

( )gr= ¢a M3Roche
1 3, where M is the body’s mass, r¢ is the

density of the orbiting material, and the factor describing
particle shape γ= 0.85 for classical calculations while γ= 1.6
has been preferred to represent the tidal destruction limit (e.g.,
Porco et al. 2007; Sicardy et al. 2019; Morgado et al. 2023).
ForM= 6× 1018 kg (the solution for a Jacobi triaxial ellipsoid,
Leiva et al. 2017), water-ice particles with r¢ = -1 g cm 3, and
either value of γ, Chariklo’s Roche limit is <300 km.
Considering an ellipsoidal shape for the nucleus, nonspherical
particles, and reasonable density ratios (δ< 5), other calcula-
tions for the Roche limit are also <400 km (Melita et al. 2017;
Sicardy et al. 2019). The Roche limit can reach past the rings
by assuming a mass of M= 8× 1018 kg (the solution for a
Maclaurin spheroid; Leiva et al. 2017), classical particle shape
γ = 0.85, and particle density typical of the small, inner,
Saturnian satellites, r¢ = -0.4 g cm 3, or lower (Thomas &
Helfenstein 2020).

Table 1
Example Differences and Similarities between Large- and Small-body Ring Systems

Characteristic Determining Factors Equationsa Comparison

Eccentricity Orbital distance = -e 1 b

a

2

2
An offset of pericenter or apocenter of 1 km at Saturn

creates a ring of e ∼ 0.004, while for Chariklo it
results in an unusually high e = 0.07.

Orbital velocity Orbital distance; =v GM

R
Saturnʼs F and C rings orbit at ∼17 and 22 km s−1,

planet or nucleus mass respectively. Ring orbital speeds at Chariklo are orders
of magnitude slower, at 30–35 m s−1. Nonetheless,
the interparticle collision velocities are similar.

Synodic periodb Ring and satellite = -
T T T

1 1 1

syn ring sat
At Saturn, a satellite located ∼100 km from the F ring

semimajor axes = pT R

v

2 has a synodic period of a thousand orbital periods. At

Chariklo, a satellite ∼40 km from the ring has a synodic
period of only a few orbital periods. Ring evolution
thus happens more quickly on smaller bodies.

Notes.
a Where e is eccentricity, b is the semiminor axis of the ring orbit, a is the semimajor axis of the ring orbit, v is the orbital velocity, G is the gravitational constant,M is
the mass of the central body, R is the orbital radius, Tsyn is the synodic orbital time, Tring is the orbital time for a ring particle, and Tsat is the orbital time for the satellite.
b The length of time between close approaches of a ring particle and a perturber, i.e., a satellite.
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Morgado et al. (2023) pointed out that more elastic collisions
than those at Saturn could prevent accretion in rings at
distances well beyond the Roche limit; however, such impacts
would cause viscous spreading. Until the physical character-
istics of Chariklo’s nucleus and ring particles are better known,
the Roche limit will not be well constrained. Given the range of
reasonable values, it is likely to be near or interior to the rings.
Our explorations here thus focus on how Chariklo’s rings can
be maintained as well as why they do not accrete. The idea of a
shepherd moon is bolstered by Saturn’s F ring, which is outside
the Roche limit, while perturbations from Prometheus and
Pandora likely hinder reaccretion of material (e.g., Murray et al.
2005).

2.2. Simulations

Our code stems from Lewis et al. (2011), which was
originally developed for N-body simulations with geometry
similar to that of Saturnʼs outer Encke gap edge with the
satellite Pan. This code was used to demonstrate that a single
satellite orbiting near a dense ring can cause the ring to collapse
on a timescale of a few orbital periods (Lewis & Stewart 2005,
2009). Here, smaller-scale systems are modeled by scaling
down the nucleus mass and the orbital distances and sizes of
the rings. The simulations employ a linearized, closed-form
solution to Hillʼs equations and utilize guiding-center coordi-
nates (Stewart 1991). A few million particles are located in a
local cell that slides downstream past a nearby satellite. The
cell has open boundaries in the radial direction, and the
azimuthal boundaries are semiperiodic. The boundary condi-
tions are designed to preserve the gradient in the epicyclic
phase that is induced by the passage of the satellite. The
nucleus and satellite are both treated as point masses.

The original version of the code employs hard-sphere,
dissipative collisions with a velocity-dependent coefficient of
restitution (from Bridges et al. 1984), meaning that the
collisions are treated as discrete events and handled in order

by time. All ring particles are spheres. Particle spin and self-
gravity are model options: when turned on, particle self-gravity
is calculated using a tree method. The same tree is used for both
gravity calculations and to find nearby particle pairs that need
to be checked for collisions.
Adjustable model parameters include (i) cell size and aspect

ratio; (ii) initial distribution of particles; (iii) nucleus mass; (iv)
satellite mass and location; (v) ring particle minimum and
maximum size, size-distribution power law, compositional
density, and (vi) self-gravity. Initial simulations were con-
ducted in a square cell ∼28× 28 km, large enough to span both
C1R and C2R radially; however, the rings do not interact with
each other dynamically and can thus be studied separately. For
the remainder of the simulations, the size of the cell was
selected to be ∼7× 7 km in order to span the anticipated width
of only the larger ring, C1R. All simulations use an initial
condition with the surface densities of particles having
Gaussian distribution(s) in the radial direction and uniform
distribution(s) in the azimuthal direction. The radial distribu-
tion is centered at the observed ring location(s) from Braga-
Ribas et al. (2014). We note that these simulations are all for
perturbed circular rings.
For the rings to be present for long periods, they need to be

confined yet not accrete into a single body. We explore
confinement and accretion with separate simulations. To look
at confinement by a single shepherd, we ran a suite of
simulations with parameters listed as numbers 1 through 9 in
Table 2: parameters for the accretion simulations are shown as
simulation number 10. These parameters were chosen to begin
understanding the effect of satellite location, satellite mass, and
the characteristics of the ring material (through particle sizes,
particle densities, and model ring optical depth, τm).
In these simulations, ring material is confined as a result of

the gravitational interaction between the ring particles and the
satellite. A collisionally damped wake is generated by the
satellite in the ring, which reduces ring width. Physically, a

Table 2
Parameters of Presented Simulations

Number Nucleus Satellite Mass Satellite Mean-motion Inner Ring Min/Max Particle Self
Mass mmoon Orbital Resonance Optical Particle Density Gravity

Radius of Inner Ringb Depth Radii
(1018 kg) (1013 kg) (km)a (τm) (m) (g cm−3)

1c,d 7 3 L L 0.4 3/10 N/A no
2c 7 3 459 L 0.4 3/10 N/A no
3c 7 3 319.9 3:4 0.4 3/10 N/A no
4c 7 3 469.2 6:5 0.4 3/10 N/A no
5e 7 0.75; 1.2;1.5; 2.25 335.1 4:5 0.02 1/10 0.5 yes
6e 7 1.5; 2.25; 2.5; 3; 6 335.1 4:5 0.04 1/10 0.5 yes
7e 7 3;3.75;4.5 335.1 4:5 0.06 1/10 0.5 yes
8e 7 1.5; 3; 4.5; 6 335.1 4:5 0.08 1/10 0.5 yes
9e 7 3 335.1 4:5 0.1 1/10 0.5 yes
10e,f 5 3 335.1 4:5 0.1 1/1.1 0.5 yes

Notes.
a Circular orbits, e = 0.
b Ring:satellite.
c Two-ring simulations: the cell size was 28 × 28 km, the initial distributions of particles were centered at 391 and 405 km with τm = 0.4 and 0.06, and q = 3. These
simulations were demonstrative and were not run to equilibrium; see Figure 1.
d No satellite.
e Single-ring simulations: the cell size was 7 × 7 km, the initial distribution of particles was centered at 391 km, and q = 3.
f Simulations favorable to accretion, run for both hard- and soft-sphere models.
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strong satellite wake causes negative flux of angular momen-
tum across the ring, resulting in particles moving to regions of
higher density. In the reference frame rotating with the satellite,
the forced eccentricity induced by the passage of the moon
appears as a standing wave moving away from it. This wave is
sheared due to differential rotation, causing regions of
compression and rarefaction indicative of wakes (Showalter
et al. 1986). The diffusion coefficient becomes negative, which
we refer to as “negative diffusion,” when the orbits of particles
with nearby semimajor axes cross. The wake damping is an
effective confinement mechanism over a range of properties;
however, it requires appropriate particle sizes and optical
depths for particle collisions to be dynamically significant.

Model data for a full ring are created by joining together
values from the cells at different times over the course of one
synodic period. Once the system has reached equilibrium,
defined by ring characteristics having constant values, the
orbital elements of particles at a given location are determined
by their position relative to the perturber, and any synodic
period of data is a valid snapshot of the full ring. The resonant
particles reach a state of relative equilibrium fairly quickly;
however, breaks appear in the unequilibrated material outside
of resonance, as the perturbations from one satellite pass to the
next do not yet align. As a result, the model ring plots in this
work are continuous for the material in resonance.

2.2.1. Soft-sphere Model

We carried out one simulation using a soft-sphere approach
rather than the standard hard sphere. The only difference between
the hard-sphere and the soft-sphere simulations was how the
collisions were handled. The soft-sphere code uses a spring and
dashpot model with a desired coefficient of restitution of 0.5 and a
desired maximum overlap between particles of 10%. Soft spheres
result in collisions that are more dissipative, softer, and more
compressible than hard-sphere collisions. This means that, when
tightly packed, the particles compress and the self-gravity is
stronger. Any self-gravitating clusters are thus more stable in the
soft-sphere simulations than for hard spheres.

2.2.2. Simulation Times

Our code supports multithreading using OpenMP (Open
Multi-Processing). The simulation speed varies greatly based
on the number of particles, optical depth/surface density, and
turning on or off self-gravity. As a representation of computing
timescales, a simulation with a single ring of model optical
depth τm= 0.02 completed an orbit every six minutes of wall-
clock time using a single node in our high-performance
computing cluster. A similar simulation with a ring of
τm= 0.08 took 60 minutes to complete each orbit after running
for a few hundred orbits, because the formation of gravity
wakes led to much higher collision rates and thus longer
computational times. With a satellite present, particles must be
tracked for multiple synodic periods so that the resonant
structures can fully form and the particles have time to evolve
from the resulting organized, non-isotropic collisions. Our
simulations were typically run for between tens and hundreds
of orbits, depending on conditions required to reach equili-
brium. The orbital period of C1R is ∼16.4 hr (assuming
nucleus mass ∼1019 kg; Pan & Wu 2016) or ∼18.5 hr
following the equations in Table 1. The synodic periods of
the simulations depend on the location of the satellite, but the

longest simulations that we carry out extend roughly one Earth
year of simulated time at Chariklo.

2.3. Moonlet Tracking

To study accretion, we wrote a data-analysis tool specifically
to track the formation and evolution of moonlets. We define a
moonlet as a group of particles of a sufficient size where all the
particles are in contact and gravitationally bound. A particle is
gravitationally bound to a group if the gravitational potential
energy is larger than the relative kinetic energy. To make
moonlet identification computationally tractable for simulations
with millions of particles, we start by binning the particles into
a grid where the grid size is several particle diameters across.
We then search for groups in order from the grid cell with the
most particles down to a minimum threshold. Each particle that
is found to be bound is tagged as being in that particular group.
The search moves outward in rings of cells around the central
one, and the particles in each new cell are tested in order based
on distance from the center of mass when that cell is started. If
any particles are encountered that are already part of another
group, they are ignored. Groups that do not meet a minimum
size requirement are also ignored.
The processing of the first time step uses only the grid to

pick a location at which to start looking for groups. After the
first step, for each group found in the previous step, the “core”
particle of the group is defined to be the particle whose center is
closest to the center of mass of the group. The search for groups
begins with each of those “core” particles. This method makes
the code more capable of tracking the same groups, and it is
particularly important when moonlets run back into any dense
ring wakes. We continue tracking cores for several time steps
even if the surrounding groups do not reach the threshold,
further improving our ability to track moonlets moving through
any wakes and to track separate moonlets after a nonmerging
collision. Checking whether a new particle in a moonlet
overlaps existing ones can also be computationally expensive.
So, once a certain number of particles are in a group, we create
a small spatial grid with a cell size equal to a particle diameter.
This way, the search for overlapping particles only has to
include particles in adjacent cells.

3. Results

For the two-ring simulations, 1–4 in Table 2, self-gravity
was turned off and thus the particle density was not relevant.
For all the single-ring simulations, 5–10 in Table 2, self-gravity
was included. With self-gravity, gravity wakes occurred in the
inner ring and the simulations were less effective at contracting
the rings. This spreading proved helpful, in terms of producing
confined rings of roughly the observed widths and not
substantially thinner. The results were also dependent on the
ring surface density. If the surface density were too low, self-
gravity did not have an effect.

3.1. Confinement Simulations

The bulk of our simulations were focused on exploring the
confinement of ring material by single-sided shepherding. We
simulated a two-ring system with different satellite locations,
and then a one-ring system with different satellite masses and
model ring optical depths. Chariklo was assumed to have a
mass of 7× 1018 kg (the middle of the range from Leiva et al.
2017).
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3.1.1. Satellite Location

When modeling both rings, simulations 1–4 in Table 2, we
used model optical depths of 0.4 and 0.06 for the inner and
outer rings, respectively. The satellite was assumed to have a
mass of 3× 1013 kg and location from 320 to 470 km. Ring-
particle sizes were 3–10 m in radius, following a standard
power-law distribution ∼r− q with fixed index q= 3 (following
the power law determined for Saturn’s rings; see, e.g., Cuzzi
et al. 2009; Eckert et al. 2021).

Figures 1 and 2 show the results from these simulations,
aimed at exploring the primary effects of a satellite in a
Chariklo-like ring system. When there was no satellite in the
system, the ring material dispersed as expected. When there
was a satellite but it was not in a resonance with the initial ring
locations, the material also dispersed. The inner ring width as a
function of time was not linear, as in the case of no satellite,
because the material was effected by the satellite; however, the
net result remained that the material was unconfined. In both
cases, the expansion of ring material was slow, as shown by the
m-scale increases in the widths of the inner ring over multiple
orbits on the right side of Figure 1.

A satellite in resonance with the rings acted to confine the
particles to km-level widths over a relatively short timescale.
Examples are shown in Figure 2 for a satellite in both an inner
and outer mean-motion resonance (MMR) with the rings. In
these cases, the inner ring was on a first-order MMR with the
satellite and another resonance was near the inner part of the
outer ring. The effects of the satellite perturbation are apparent

in both rings as azimuthal and radial variations in the
distributions of particles. We note that the effect of a satellite
in an interior resonance can be considered dynamically similar
to that of one in an exterior resonance, or that of a non-
axisymmetric nucleus that is in a rotational resonance with the
rings (as considered by Sicardy et al. 2019).

3.1.2. Satellite Mass and Ring Optical Depth

To explore the effect of the satellite mass, as well as a
broader range of ring-particle characteristics, we carried out
simulations 5–9 in Table 2 for the inner ring only. For these
simulations, we fixed the satellite location at the 4:5 MMR.
This resonance was chosen based on the initial simulations,
because it confined ring material at the approximate locations
of C1R and C2R within a reasonable timescale. Placing the
satellite in other resonances will change the strength and
number of perturbations, resulting in different ring character-
istics and timelines for confinement (e.g., Figure 2). We
explored a range of satellite masses from 7.5× 1012 to
6× 1013 kg (∼10−7

–10−6 the mass of Chariklo) and a range
of ring model optical depths from 0.02 to 0.4. Ring-particle
sizes were 1–10 m in radius, following a power-law distribution
with fixed index q= 3. The particle density was 0.5 g cm−3.
Figure 3 shows the ring guiding-center full width at half

maximum (FWHM) over time of a subset of these simulations,
for three different satellite masses and a ring of two different
model optical depths. Setting an initial condition of τm= 0.4 in
these simulations produced clumping of material, as well as an

Figure 1. Demonstration of the effect of there being no satellite or a satellite outside of resonance for a Chariklo-like ring system. These plots are from simulations 1
and 2 in Table 2 (top and bottom, respectively). The left column contains visual representations of the distribution of ring material at the end of the simulation: black to
white represents model optical depths 0–1. The right column shows the evolution of the width of the inner ring throughout the simulation. In both cases, the ring
material was not confined. Note: the radial scale in the left column is exaggerated by a factor of five for better visualization. The widths are calculated from binned
data. The meter-scale jumps in ring width in the lower right plot are due to single particles being included or excluded when binning over the ring to plot the width.
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increased collision rate, and it slowed the computations to the
point of being unreasonable. Simulations 1–4 did not
demonstrate this, because particle self-gravity was not
included, but here we took the more physically realistic
approach of increasing particle density and reducing the initial
model optical depths. See Section 4 for further discussion.

From Figure 3, satellites with the lowest mass
(1.5× 1013 kg) maintained but did not confine the ring to the
observed widths. A satellite with a slightly higher mass
contracted the ring to the few-km widths observed for C1R.
However, as optical depth increased, the mass of the satellite
required for confinement also increased. Satellites with higher
mass contracted the ring even further, to the scale of a
single km.

The width of the simulated ring from the middle right panel
in Figure 3 is shown in Figure 4. This plot demonstrates that
the actual ring width varied over azimuth. The azimuthal width
variations in this simulation were approximately two km.

In Figure 5, we have combined the results from simulations
5–9 to roughly map ring confinement as a function of satellite
mass and initial optical depth of the inner ring. Material is
defined to be confined with a visual inspection of the density of
guiding centers over the course of the simulation. Satellite mass
and ring optical depth were positively correlated, in an
approximately linear relationship, in terms of confining
material to the few-km width observed for Charikloʼs inner

ring. In addition, tighter confinement occurs for simulations
that have lower initial optical depths (and thus lower initial
collisional rates).

3.2. Accretion Simulations

We next explored the impact of the shepherd-moon wakes
on accretion. The confinement mechanism from single-sided
shepherding produces wakes with a significantly higher density
than the general ring material, where particles can easily form
clumps or gravitationally bound moonlets. Lewis & Stewart
(2005) found that material leaving the satellite wakes in
simulations of the Encke gap formed extended gravity wakes.
While this mechanism could enhance accretion, the dynamics
of the satellite wakes produces regions of rarefaction in
addition to the compression. This occurs when the perturbed
streamlines separate. Our simulations addressed two hypoth-
eses relating to accretion in the Chariklo system: (i) particles
that are not sufficiently bound together will shear out, and (ii)
collisional interactions between the wakes and the moonlets
will cause more erosion than additional accretion.
We ran two simulations with parameters that favored

accretion: one used the standard hard-sphere model and the
other used the soft-sphere model, following Section 2.2.1. The
satellite was 3× 1013 kg in the 4:5 MMR, the initial ring
optical depth was 0.1, and the particle density was 0.5 g cm−3

(Table 2). To promote accretion, these simulations considered a

Figure 2. Demonstration of the effect of a satellite in resonance for a Chariklo-like ring system. These plots are from simulations 3 and 4 in Table 2 (top and bottom,
respectively). The left column contains visual representations of the distribution of ring material at the end of the simulation: black to white represents model optical
depths 0–1. The right column shows the evolution of the width of the inner ring throughout the simulation. A single satellite, in orbital resonance either interior or
exterior to rings, confined the ring material to widths of a few km. Azimuthal variations are apparent. The bottom plot is somewhat similar to Charikloʼs known ring
system; however, the ring was still shrinking at the time the simulation was halted. Note: the radial scale in the left column is exaggerated by a factor of five for better
visualization. The widths are calculated from binned data. The meter-scale jumps in ring width in the lower right plot are due to single particles being included or
excluded when binning over the ring to plot the width.
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smaller range of particle sizes (1–1.1 m in radius with q= 3)
and Chariklo had a smaller mass (5× 1018 kg). Using the size
from Morgado et al. (2021), this mass corresponds to a density
of 0.62 g cm−3 for Chariklo. These parameters give a scaled
Hill radius of 1.27, which is significantly larger than the value
of 1.1 found to lead to accretion in previous ring studies (see
Section 3.2 of Michikoshi & Kokubo (2017), for references). In
other words, the ring was well outside the classical Roche limit
in these simulations.

The accretion-testing simulations were run for just over 30
orbits, long enough for the resonant satellite wakes to form and
for self-gravity to begin the process of accreting particles. We
found and tracked moonlets from the time of their formation to
when they fell apart or the end of the simulation, following the
method in Section 2.3. Results from the simulations at three
specific time steps are shown in Figure 6. Figures 7–9 contain

close-ups of a selection of the moonlets detected during these
time steps.
Figure 7 shows the state of the hard-sphere simulation during

the 32nd orbit, in which the density wakes were easily visible
and there were two moonlets. Moonlets formed as clumps of
material fell out of the passing satellite wake, where densities

Figure 3. The effect of satellite mass on the FWHM of the ring guiding-center core, from a subset of simulations 6 and 8 in Table 2. The initial conditions consider
material with two different optical depths, τm = 0.08 (left) and τm = 0.04 (right). The mass of the satellite is given for each panel as mmoon. The higher optical depth
required a more massive moon for confinement. The middle right simulation produced a ring similar in width to C1R and was used to produce Figure 4. We note that
the simulations in the bottom panels were halted once they reached equilibrium, while in the upper panels they were continued.

Figure 4. FWHM of the simulated ring vs. time for simulation 6 with satellite
mass 3 × 1013 kg from Table 2, which corresponds to the middle right panel in
Figure 3. This plot demonstrates that the ring width varied by a few km
azimuthally.

Figure 5. Confinement of ring material as a function of satellite mass and ring
optical depth for simulations 5–9 in Table 2. Yellow to blue coloration
represents the guiding-center width of the inner ring, and data points with black
centers are confined when the simulations reach steady state. A gray line
represents a roughly linear divide, above which ring material is confined and
below which it is not.
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were elevated; however, the material was only tenuously bound
and sheared out with even small perturbations. The top moonlet
lasted the longest of any in this simulation: no moonlets were
stable longer than half an orbital period.

Figure 8 shows the state of the soft-sphere simulation early
in the 27th orbit. As with the hard-sphere simulation, material
came out of the satellite wake in clumps. Unlike the hard-
sphere simulation, the highest-density clumps formed moonlets
that were stable for many orbits. Figure 8 highlights nine of the
more than 40 moonlets present at this time, most of which
display tails of sheared material.
Figure 9 shows the soft-sphere simulation near the beginning

of the 31st orbit. At this point, a reasonably large fraction of the
ring material was contained in just over 30 moonlets. The
satellite wake was not as defined because the effective optical
depth had been dramatically reduced. The state of the ring was
similar to the oligarchic growth phase seen in planetary-
formation simulations. The moonlets also had crossing orbits,
so they could collide. Such collisions were rare and more
energetic than earlier in the simulation, although the collisions
at this time were generally not destructive.
A plot of the number of moonlets detected along with the

numbers of particles in those moonlets as a function of time for
both the hard- and soft-sphere simulations is shown in
Figure 10. To remove any “false positives” in the wake peaks,
only clumps of particles that survived for at least one-third of
an orbit were counted. In both simulations, the number of
moonlets varied throughout an orbital period because the
satellite wake created and destroyed clumps of material. No
moonlets survived long-term in the hard-sphere simulation.
Indeed, when the criteria to rule out false positives was
increased to one-half of an orbit, there was never more than one
moonlet present at any time in the hard-sphere simulation. The
oscillations were created by the fact that moonlets formed as
material dropped out of the wake peak, then fell apart because
of various collisions with other ring material over the course of
the next orbit.
In the soft-sphere simulation, the number of moonlets

increased drastically to nearly 50 before leveling out to roughly
30 stable moonlets at the end of the simulation. These
simulations included roughly 2.5 million particles with a
narrow size distribution. In roughly 30 orbits, nearly a third of
the simulation material was entrained into approximately 30
larger moonlets. The final moonlet count leveled off when the
wakes no longer had sufficient material to form new moonlets
and the mean intercollision time for the moonlets was large,

Figure 6. Full-cell snapshots of the accretion simulations. Each simulated particle is plotted as a black point. The panels are (left) the 32nd orbit from the hard-sphere
simulation, (middle) the 27th orbit of the soft-sphere simulation, and (right) the 31st orbit of the soft-sphere simulation. Accretion does not form stable moonlets in the
hard-sphere simulations, whereas it does in the soft sphere. By the end of the soft-sphere simulation, much of the material had accreted into ∼30 moonlets and the
optical depth of the wake was greatly reduced.

Figure 7. Snapshot from the 32nd orbit of the hard-sphere, accretion
simulation. Each simulated particle is plotted as a black point. On the right
is a slice through the simulation cell (the left panel in Figure 6). On the left are
close-ups of the two longest-lived moonlets detected in this simulation, which
lasted less than one orbit before shearing out. The moonlets are plotted in the
same colors in the right panel, to indicate their locations.
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much like in the oligarchic growth phase seen in planetary
simulations.

4. Discussion

We have demonstrated that a single satellite can confine ring
material at the approximate location, width, and optical depth
observed for C1R at Chariklo. The dynamical mechanism that
confines ring material with a shepherd moon works when the
particles are in a rotational resonance with the satellite. Initial
simulations of a two-ring system suggest that both C1R and
C2R can be confined if both rings are in resonance with the
satellite. The majority of the presented simulations consider a
satellite that is interior to the rings, in a 4:5 MMR with C1R.
Either an exterior or interior satellite in resonance will have the
same effect. The dynamical mechanism works similarly to a
gravitational anomaly that is in a rotational resonance with the
rings. Unlike the giant planets, small bodies with modest
topographical features or elongations may exhibit non-axisym-
metric gravitational field terms that lead to strong resonances
between their spin and ring particles. Sicardy et al. (2019)

showed that material inside of Chariklo’s corotation radius can
migrate onto the nucleus, while material outside is pushed
outside the 2:1 spin–orbit resonance. Chariklo’s rings are
cleared within the corotation radius, and they are located close
to the 3:1 resonance with the spin period (Leiva et al. 2017;
Ortiz et al. 2017). A satellite, a gravitational perturbation, or
both could be occurring at Chariklo.
Our hard-sphere simulations do not easily accrete into

moonlets, while the soft-sphere collisions can sweep most of
the ring material into moonlets in a relatively short period of
time. The soft-sphere simulations are likely nonphysical in
terms of the stability of the moonlets. This is because
gravitational attraction between particles that overlap is not
included in the force model, as such particles push apart in the
damped-spring model. However, when particles are in a clump,
they do feel the attractive gravitational force of all the particles
with which they do not directly overlap. The particles in the
center of the moonlet clumps have nonphysically large
overlaps, on the order of 50%. For moonlets with thousands
of particles, there is still a reasonably large compressive force.
The existence of rings implies that particles orbiting Chariklo

Figure 8. Snapshot from the 27th orbit of the soft-sphere, accretion simulation. Each simulated particle is plotted as a black point. On the right is a slice through the
simulation cell (the middle panel in Figure 6). The density wakes are visible but are less apparent than in the hard-sphere simulation because more material had
accreted into moonlets. On the left are close-ups of a subset of the moonlets detected during this step. The examples here are representative of the more than 40
moonlets identified at this time. The moonlets are plotted in the same colors in the right panel, to indicate their locations.

9

The Planetary Science Journal, 5:32 (14pp), 2024 February Sickafoose & Lewis



do not accrete quickly and therefore contains information about
the properties of the ring material. It is likely that the ring
particles have physical properties that are somewhere between
what is represented by our hard- and soft-sphere simulations.

Our simulated rings are not eccentric; they are perturbed
circular rings. Figures 11 and 12 show the characteristics of
epicyclic phase (j), forced eccentricity (ef), and guiding-center
optical depth (τgc) for one of the simulations. Figure 12
contains the characteristics throughout the full simulation,
while Figure 11 shows the final orbit projected onto a circle for
better visualization. The circularity of the ring is demonstrated
through the circular nature of τgc as well as j, the latter of
which shows the apses at different azimuthal locations based on
radial position and a sheared m= 4 perturbation in Figure 11.
The black circle in Figure 11 allows comparison of the
distributions of these characteristics with respect to the location
of the resonance itself. There is more material toward the
location of the satellite from this resonance (here interior), as
shown in the plot of τgc. If the proposed 3:1 spin–orbit
resonance acts similarly, there may likewise be an offset
distribution of ring material. We note that Chariklo is known to
be a non-axisymmetric body (e.g., Morgado et al. 2021), while

our model considers both the nucleus and the satellite to be
point sources. The effects of a non-axisymmetric nucleus will
be an area for future work, but the timescales for those
gravitational effects are likely to be longer than the tens of
orbits in which we find that perturbations from a satellite act on
the ring particles.

4.1. Could Chariklo Have a Satellite?

The satellite that produced the ring widths shown in Figure 4
would have a radius of ∼3 km, assuming a reasonable density
of 1.5 g cm−3. Although Chariklo is not currently known to
have any satellites, the existence of a few-km-sized moon at
Chariklo is not unrealistic. The angular size of a 2 km body at
Chariklo’s current distance is <0.1 mas, with the entire ring
system extending ∼75 mas. Direct imaging, for example with
the Hubble Space Telescope, has not been able to resolve the
rings nor anything else closer than 1000 km from Chariklo’s
center (e.g., Bérard et al. 2017). In addition, a few binary
Centaurs have been detected (e.g., Noll et al. 2006, 2008) and
50%–60% of one of the Centaurʼs parent TNO populations, the

Figure 9. Snapshot from four orbits later than Figure 8 of a soft-sphere, accretion simulation. Each simulated particle is plotted as a black point. On the right is a slice
through the simulation cell (the right panel in Figure 6). On the left are close-ups of some of the moonlets detected during this step. The top left and top center
moonlets were the longest-living ones in the simulation. The moonlets are plotted in the same colors in the right panel, to indicate their locations.
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Plutinos, are thought to consist of tight binary systems (Di Sisto
et al. 2010; Thirouin & Sheppard 2018).

4.2. Optical Depth

An important factor in the simulations and the observations
is ring optical depth. Optical depth is related to both particle
sizes and surface number densities: a simplistic example is that
higher optical depth can be caused by a few large particles or
many small particles (e.g., van de Hulst 1957). The particle size
distribution is thus a key parameter for ring modeling, which is
currently unknown for Chariklo.

Assuming that the apse alignment is maintained by the ring’s
self-gravity, Pan & Wu (2016) estimated a typical particle size
of a few meters. On the other hand, Michikoshi & Kokubo
(2017) argued that the Centaur rings are observable only given
ring particles smaller than a meter or with the existence of
shepherding satellites, otherwise the viscous spreading occurs
on too short a timescale (100 yr). Analysis of dual-wavelength
data (visible and red) from a stellar occultation by Morgado
et al. (2021) showed no dependence of ring opacity with
observational wavelength, suggesting that the particle sizes are
larger than a few microns.

The simulations presented here have a minimum particle
radius of 1 m. The size distributions of planetary rings are
typically well-described by a power law with a differential
slope that is characterized by a steep increase in the number of
particles at smaller sizes. For this reason, it is impractical from
a computational standpoint for ring models to consider particles
at scales smaller than roughly a meter for a cell this size,
artificially limiting the optical depth of systems that can be
effectively simulated (or ignoring particle self-gravity, as in
simulations 1–4 in Table 2). However, stellar-occultation
observations are sensitive to small particles, down to
submicron sizes for visible-wavelength data. Therefore, caution
must be taken when comparing modeled and observed optical
depths.

The optical depths reported for our simulations are geometric
optical depths of the fractional area coverage, calculated by
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where ri is the radius of the ith particle and A is the area of the
simulation cell in the ring plane. Observed optical depths are
calculated from stellar-occultation data. Stellar occultations
measure the transmission, T, of light when a star is blocked by
ring material. The optical depth along the line of sight, τ0, is
calculated by = t-T e 0, and the normal optical depth, τN, is
calculated given a ring opening angle, B, by ∣ ∣t t= BsinN 0 (for
a polylayer ring, e.g., Elliot et al. 1984). Reported optical
depths for Chariklo’s rings, the proposed rings at Quaoar, and
the recent recalculation of the characteristics of the features at
Chiron have included a factor of two in this calculation,

∣ ∣t = t BsinN 2
0 (Braga-Ribas et al. 2014; Bérard et al. 2017;

Braga-Ribas et al. 2023; Morgado et al. 2023; Pereira et al.
2023). This factor is based on inferred physical properties of
the rings, assuming that the rings are thin and the occultation
optical depth is larger, by an extinction efficiency factor of two,
than the area physically filled, similar to what is observed for
the Uranian rings (e.g., Cuzzi 1985; Roques et al. 1987).
Published values for normal optical depths for material
surrounding Chiron were based on the standard calculation
(Sickafoose et al. 2020, 2023). It is important to take this factor
of two into consideration when comparing published ring
characteristics and determining model parameters.
Here, we have used the normal optical depths for Chariklo

given by Braga-Ribas et al. (2014) while not employing self-
gravity, or we have used significantly lower model optical
depths with reasonable particle densities. A factor-of-two
increase from the published optical depth for C1R would be too
dense for our simulations to proceed reasonably, noting again
that occultations can detect much smaller particles sizes than

Figure 10. (left) Number of moonlets detected and (right) number of particles in those moonlets vs. time for the accretion simulations. The hard-sphere simulation is
plotted in teal, and the soft-sphere simulation is plotted in dark yellow. Moonlets were not sustained in the hard-sphere simulations, and for the soft-sphere simulations,
particles continued accreting into moonlets. The plots start at the orbit in which the first long-lived moonlet was detected. The periodicity of the satellite wake is
apparent as moonlet creation and destruction on suborbital timescales, in particular in the hard-sphere simulation. Only clumps that lasted at least one-third of an orbit
were included to remove any false positives.
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those in our simulations—and thus model and observed optical
depths need not be equivalent.

4.3. Applicability to Other Ring Systems

The model presented here could apply to other small-body
ring systems. The Centaur Chiron is similar in size to
Chariklo (spherical estimate of 218± 20 km and ellipsoidal
with semi-axes of 114, 98, and 62 km; Lellouch et al. 2017;
Braga-Ribas et al. 2023) with a similar rotational period
(5.92 hr; Marcialis & Buratti 1993), and its orbit ranges from
8.5 to 19 au. Stellar occultations in the early 1990s revealed
an asymmetric dust coma at Chiron as well as narrow jets
(Elliot et al. 1995; Bus et al. 1996). A combination of stellar
occultations, rotational light curves, and long-term photo-
metric and spectroscopic variations have been used to support
the idea of a two-ring system with additional surrounding
material (Ortiz et al. 2015; Ruprecht et al. 2015; Sickafoose
et al. 2020). The proposed Chiron rings are at 300 and
309 km, are 2.5–4.5 km in width, and vary azimuthally in
width by 1.5 km (inner ring) and 0.5 km (outer ring)
(Sickafoose et al. 2020). However, the most recent occulta-
tion observations suggest that the situation is not as simple as
a stable, two-ring system (Ortiz et al. 2023; Sickafoose et al.
2023). Further observations are needed to better characterize
material around Chiron, but the demonstrated applicability of
our simulations for Chariklo suggests that they could also be
relevant for any stable rings at Chiron.

Haumea was the second small body with a confirmed ring
system (Ortiz et al. 2017). Unlike Chariklo and Chiron,
Haumea is a large TNO with even faster rotation and known
satellites: assuming a triaxial ellipsoid, the size is estimated to
be 2322× 1704× 1026 km, its orbit ranges from 35 to 52 au,
and the rotational period is 3.9 hr (Rabinowitz et al. 2006; Ortiz
et al. 2017). Haumea has a collisional history, which resulted in
the formation of its two satellites and more than a dozen
smaller TNOs known as Haumea-family objects (e.g., Brown
et al. 2007; Ragozzine & Brown 2009; Schlichting & Sari 2009;
Leinhardt et al. 2010). A single, coplanar ring was detected at
Haumea, with a width of ∼70 km at a radius of ∼2287 km,
which is inside the Roche limit (Ortiz et al. 2017). In size, body
shape, and ring width, the Haumea system is different from
Chariklo and Chiron. Although the known satellites could
suggest that Haumea is a good candidate for our simulations,

they orbit far enough away from the ring that they do not affect
it dynamically. Our simulations also specifically maintain
narrow rings a few km in width, and they are thus likely to be
less applicable to Haumea than to the Centaur systems.
Most recently, one or two possible rings were reported

around Quaoar (Morgado et al. 2023; Pereira et al. 2023).
Quaoar is a ∼1110 km diameter TNO, orbiting from 42 to
45 au, with a rotational period of either 8.84 hr (single-peaked)
or 17.68 hr (double-peaked) (Trujillo & Brown 2003; Brown &
Trujillo 2004; Braga-Ribas et al. 2013; Morgado et al. 2023). It
is known to have one satellite, Weywot (e.g., Fraser &
Brown 2010). Quaoar does not have a homogeneous ring: the
majority of Quaoar stellar-occultation light curves have not
detected any material or only during either ingress or egress
(Morgado et al. 2023; Pereira et al. 2023). There is a wide
range of reported normal optical depths, with only one
significant detection having a low-error measurement where
τN� 0.1 (Morgado et al. 2023; Pereira et al. 2023). The
proposed rings are located at 2520 and 4057 km, with possibly
all—and certainly the more distant—material being well
beyond the Roche limit (Pereira et al. 2023). Quaoar is known
to have a moon, Weywot, for which the more distant ring is
proposed to be in a 6:1 MMR, considering the double-peaked
period (Morgado et al. 2023; Pereira et al. 2023). If stable rings
were confirmed at Quaoar, this could be the most applicable
system to model using our simulations.

5. Conclusions

We have carried out a set of N-body simulations to explore
the efficacy of a single satellite as a confinement mechanism for
Chariklo-like rings. We find that ring material spreads in the
control case of no perturber in the system. Ring material also
spreads if there is a satellite in the system but it is not in a
mean-motion resonance with the rings. A satellite in resonance
with the ring(s) can confine the material: an exterior resonant
satellite (6:5 MMR) or an interior one (4:5 MMR) both work
well. We further find that (i) a low-mass satellite is insufficient
to confine ring material, (ii) a satellite of sufficient mass
confines the ring to the observed scale of a few km in width,
(iii) as ring optical depth increases, the satellite mass must also
increase to allow confinement, and (iv) more massive satellites
can produce even thinner rings than those observed.

Figure 11. Characteristics within the simulated ring at steady state: epicyclic phase (j), forced eccentricity (ef), and guiding-center optical depth (τgc). The color-scale
legend provides quantification for each of the parameters from low (indigo) to high (red), and the radial scale has been exaggerated for better visualization. The
circularity of the ring is demonstrated in the plots of τgc and j. Perturbations to the ring material are particularly evident in ef. For reference, a solid black line is plotted
at the 4:5 MMR with the satellite. This example plot is provided for the hard-sphere accretion simulation number 10 in Table 2: this figure is a circular projection of
the data from the final orbit shown on the far right side of Figure 12.
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The midrange satellite mass in our simulations (3× 1013 kg)
confines a ring to a width of a few kilometers and exhibits
azimuthal width variations on the order of a few km, which are
similar in scale to the observed properties of C1R. Such a
satellite would be a few km in radius, which is below the
current direct-detection limits in the Chariklo system. These
results used model optical depth of τm= 0.04 with particles of
density 0.5 g cm−3 from 1 to 10 m in radius. The simulation
phase space explored here is not exhaustive, but it does provide
representative conditions under which a Chariklo-like ring can
be maintained. For example, more work is needed to determine
if there is a preferred satellite MMR to best match the
observations. We note that the dynamical mechanism explored
here works similarly to a topographical surface feature that is in
a rotational resonance with the rings: either or both of these
processes could be occurring at Chariklo.

A shepherd satellite also provides a mechanism to both
create and destroy clumps of ring material. To investigate the
behavior of material that is possibly located outside the Roche
limit, we conducted simulations that were favorable to
accretion for hard- and soft-sphere models. For hard-sphere
simulations, we find that ring material clumps as a result of the
satellite density wakes but shears out on timescales of less than
one orbit. For soft-sphere simulations, many moonlets were
formed. After approximately 30 orbits, most of the material
accreted into moonlets and the optical depth of the ring is
greatly decreased. It is likely that Chariklo’s ring particles have
physical properties that are somewhere between what was
represented by our hard- and soft-sphere simulations. An area
of future work is to explore the properties of model particles in
order to place better constraints on the physical properties of
ring particles at Chariklo. In addition, we plan to look into how
our model could be modified to investigate the proposed 3:1
spin–orbit resonance of a non-axisymmetric body (e.g., as
proposed by Sicardy et al. 2019).
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