Basic Event
Information |
|
Varuna Event (Geocentric) Mid-time (yyyy month dd hh:mm:ss) | 2012 January 02 13:16:33± 00:01:30 UT |
Occultation Star Position (J2000): | RA (hh mm ss.ss):07 44 35.590 Dec (dd mm ss.s): +26 15 48.44 |
Occultation star USNOB Rmagnitude | 15.95 |
Varuna approximate visual magnitude | 20.2 |
Detailed information on the occultation prediction is available here.
Finder charts to confirm the star position are located here.
The scientific goals of this event are (i) to accurately determine the diameter and shape of Varuna, (ii) to probe for any tenuous atmosphere of Varuna, and (iii) to detect possible nearby satellites of Varuna.
As the 16th magnitude occultation star is going to be occulted by a 20th magnitde KBO, the main observational result should be that the occultation star vanishes from the field and then reappears. The maximum expected duration for this event is likely to be just over 40 seconds at the center of the shadow, and shorter as one approaches the limbs.
The time given in the table above is the time the shadow should pass over the geocenter. Given the 25 km/sec shadow travel rate, the exact event time depends on your site location. It will occur centered around 13:13 UT in Western US, 13:15 UT in Hawaii, and 13:19 UT in Japan.
To find a precise time, go to the table on the bottom of the the occultation prediction page, and choose the site nearest your location. The midtime of the event (midway between disappearance and reappearance) is given in the UT Mid-Time column.
Our primary result from this event is the precise timing of when the occultation occurs. Thus, we would wish to record the star with as short a cycle time as is feasible. As the KBO shadow moves across the earth at approximately 25 km/sec, every one second uncertainty in the disappearance or reappearance time corresponds to approximately a 25 km uncertainty in the measured radius of the KBO.
Thus for ~1m telescopes, we hope to measure the star's brightness with about 1-2 second exposures.
Larger aperture telescopes can record the star at a faster cadance if supported by the camera, but be sure the star image has enough signal that it is not read-noise limited.
If sky conditions are sub-optimal, increase the exposure/cycle times until you can get a clear image of the star, as we are more concerned with timing than with the star's actual brightness. Time variable sky conditions should be easily calibrated out as there are several stars of similar brightness (that will not be occulted) within a couple of arcminutes of the occultation star. (See finders.).
Also, the absolute time of the disappearance and reappearance is as critical as the duration, as having a common and consistent time-base allows us to directly combine the data from separate stations resulting in a more precise picture of the overall size (and shape!) of the KBO. Thus GPS time-tagged exposures are preferred whenever possible, but if not, care should be taken to properly calibrate the recording camera's system clock before the event. (Such as through the use of an internet time server, external GPS time source, etc.)
While the event is expected to last no more than a twenty seconds around the midtime, 1) the prediction is somewhat uncertain, perhaps as large as couple of minutes, and 2) the goal of scanning for small satellites/debris requires monitoring the star both before and after the event.
Thus, we recommend continuous observations from at least 10 minutes before through 10 minutes after the expected occultation midtime. Depending upon your location, camera, and conditions, you may be able to increase this to 20 minutes before and after.
For this event, we are simply looking for the largest signal to noise signal possible, to enable the shortest exposure times. Thus, no filter is required, and minimum pre-camera optics are suggested, to gain the maximum light from the star.
Camera calibrations, such as bias frames and flat/dark frames if needed, should be taken before and after the event depending upon the camera in use. POETS cameras supplied by MIT need no dark frames if operated at –30 C for these short exposure times, but bias frames are always needed. Please be sure to take bias and dark frames if needed using the same temperature/exposure settings that was used to record the event. Flat field images, taken on the twilight sky are appreciated from all systems as they aid in careful reduction of the frames.
If your camera supports Automatic Dark Subtraction, we recommend turning this off for these observations, as these modes often result in variable overhead times, and we prefer to do dark/bias subtraction manually.
Portable telescopes are asked to record their GPS location both before and after the event to be sure the location was stabilized during the event time.
Large aperture telescopes, with the capability of imaging the KBO itself (~18th mag), rather than just imaging the star, are requested to take astrometric images of the field before and after the event (possibly the night before and after), in which the star and the KBO are separated enough to do accurate measurements of their separate positions. The provided finder charts indicate how much the KBO moves in a day.
If your dynamic range does not allow observations of the 18th mag KBO without saturating the 15th mag occultation star, alternating sets of frames with exposure times suitable to each are requested. Such frames should always be centered on the occultation star and allow the KBO to move across the field. This way a consistent astrometric reference network can be used for all reductions.
Last updated by Carlos Zulauga (czuluaga@mit.edu) 2011-11-10 09:00
Please direct all inquiries to the MIT Planetary Astronomy Lab (planetary-astronomy@mit.edu)